
GTRAC: Supplementary Data

April 5, 2016

In this supplementary data we provide some more implementation details
of the GTRAC (GenoType Random Access Compressor) algorithm. We first
provide instructions on using the GTRAC source code, and then discuss some
implementation details. Finally, we provide some additional results.

Getting Started

Install

To install GTRAC, follow the following instructions:

download GTRAC

git clone https://github.com/kedartatwawadi/GTRAC

Run the install file to download and install

rsdic,TGC and GTRAC libraries

./install.sh

The install.sh script downloads and installs the following libraries, before
compiling the GTRAC code.

1. rsdic (https://github.com/kedartatwawadi/rsdic):
The library implementation of succinct bitvectors.

2. TGC (https://github.com/refresh-bio/TGC):
The TGC Compressor, which we use for VCF file handling and variant
dictionary compression.

Run GTRAC

One can run an example of the GTRAC compressor by running the following
code:

Run GTRAC for the chromosomes mentioned in config.ini

of the 1000GP project

./run -abceik

The run shell script does the following:

1. Downloads VCF and reference FASTA files (for chromosome 22, by de-
fault) corresponding to the 1000 Genome Project.

1

2. Uses tools from the TGC repo to process the VCF files and convert them
into the (H,VD) representation.

3. Uses GTRAC to compress the binary matrix H.

4. Uses tools from the TGC repo to compress the variant dictionary VD.

Test Random Access

GTRAC supports per-variant extraction (column-wise extraction), and per-
haplotype extraction (row-wise extraction) from the compressed symbol matrix
HK . These features can be tested by running the following examples:

Move to the correct directory

cd ../Data/chr22

single-variant extraction:

This corresponds to extracting 792-799th variant (the 100th symbol)

information at a time.

../../GTRAC/src/gtrac_decomp c chr22.list 100

complete haplotype extraction:

This corresponds to extracting 1000th haplotype

from the compressed dataset.

../../GTRAC/src/gtrac_decomp f chr22.list 1000

haplotype sub-sequence extraction:

This corresponds to extracting a subsequence of length 1000

starting from 10th symbol of 800th haplotype of the compressed dataset.

../../GTRAC/src/gtrac_decomp f chr22.list 800 10 1000

Datasets

We used two large datasets; the 1000 Genome Project Phase 1 H.Sapiens dataset
and the 1001 Genomes A.Thaliana dataset. These datasets can be accessed at
the follwing locations:

H. Sapiens Dataset

The 1000 Genome Project phase 1 can be downloaded from:

1. Link to the Reference files for all the chromosomes:
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Eukaryotes/

vertebrates_mammals/Homo_sapiens/GRCh37/Primary_Assembly/assembled_

chromosomes/FASTA/.

2. Link to the VCF files for all the chromosomes:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/

integrated_call_sets/

2

A.Thaliana dataset

The A.Thaliana dataset comes from 4 different subprojects, containing in total
775 sequenced strains.

1. Link to the Reference FASTA files for all chromosomes :
ftp://ftp.arabidopsis.org//Sequences/whole_chromosomes/

2. The VCF files can be downloaded from the 4 different subprojects:

(a) MPICao2010—80 Arabidopsis Thaliana accessions:
http://1001genomes.org/data/MPI/MPICao2010/releases/2012_

03_13/strains/

(b) Salk—Arabidopsis Thaliana strains sequenced by the Salk
Institute:
http://1001genomes.org/data/Salk/releases/2011_06_28/TAIR10/

strains/

(c) GMINordborg2010—Arabidopsis Thaliana strains sequenced
by the Gregor Mendel Institute:
http://1001genomes.org/data/GMI/GMINordborg2010/releases/

2011_08_04/strains/

(d) MPICWang2013—343 Arabidopsis Thaliana accessions:
http://1001genomes.org/data/MPI/MPICWang2013/releases/2013_

04_15/strains/

As the datasets are the same as the ones used by TGC, more information about
their access can be obtained from sun.aei.polsl.pl/tgc/.

Additional Compression Details

The variant dictionary VD represents an indexed list of all the variants present
in the dataset. Note that the variant dictionary typically consists of a small
portion of the memory usage of the (H,VD) representation (e.g., 5% to 10% for
the 1000GP and the A.Thaliana datasets). Thus we concentrate concentrate our
efforts on the compression of the binary matrix H, and use the same technique as
the one proposed in TGC (sun.aei.polsl.pl/tgc/) to compress the variant
dictionary VD.

The basic idea on the compression of the variant dictionary VD is to com-
press each type of variant separately. The different types of variants are Single
Nucleotide Polymorphism (SNP), insertions, deletions, and Structural Variants
(SV). For each variant type, the variants’ positions are differentially encoded
(e.g., distances between consecutive SNPs). The remaining parameters of each
of the variants are also encoded. For example, for SNPs, the substituting symbol
is stored, for insertions, the length and the inserted symbols are stored, etc. All
these values are encoded using a variant of arithmetic coding with appropriate
contextual models. More details can be found in the the TGC paper.

The method to compress the binary matrix is explained in the main paper.
The implementation uses hash tables to find the matches and construct the
phrases. The time required to compress the binary matrix H for each chromo-
some is on average about 30 minutes for the H. Sapiens dataset, and about 15
minutes for the A. Thaliana dataset.

3

Additional Results & Discussions

We experimented with different values of the parameter K for forming the sym-
bol matrix HK. For K being multiples of 8, it was observed that memory
handling is much easier. The random access is also effectively faster due to
the byte-aligned memory handling. We experimented with values K = 8 and
K = 16. For K = 16, the overall archival memory usage is similar to K = 8
(slightly higher). K = 16 results in faster compression and haplotype-extraction
(with an increase of almost a factor of 2). However, the single-variant extrac-
tion times remain almost the same. This is expected as our haplotype substring
extraction algorithm extracts the sub-string a symbol at a time. Thus, increase
in symbol size results in lesser symbols to be extracted for a sub-string.

The comparison for symbol-size 8 and 16 are summarized in Table 1. The
e parameter encoding requires less memory mainly due to reduced row-size of
the symbol matrix. The C parameter encoding takes more amount of memory,
as each symbol we store is now 2-bytes instead of 1-byte. For higher values
of K, the total amount of memory required increases significantly, mainly due
to increase in the symbol size (which in turn increase C parameter encoding
memory requirement).

K parameter comparison for chromosome 22 of the H.Sapiens dataset

GTRAC, K = 8 GTRAC, K = 16

Total Archive Memory 16MB 17MB
C parameter encoding 4.2MB 7MB
e parameter encoding 6.9MB 4.9MB
Per genome decompression Time 0.17s 0.07s
Per Variant decompression Time 15ms 17ms

Table 1: Comparison of performance for K = 8 and K = 16

4

