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Abstract

Motivation: Recent advancements in sequencing technology have led to a drastic reduction in the
cost of sequencing a genome. This has generated an unprecedented amount of genomic data that
must be stored, processed and transmitted. To facilitate this effort, we propose a new lossy com-
pressor for the quality values presented in genomic data files (e.g. FASTQ and SAM files), which
comprise roughly half of the storage space (in the uncompressed domain). Lossy compression
allows for compression of data beyond its lossless limit.
Results: The proposed algorithm QVZ exhibits better rate-distortion performance than the previ-
ously proposed algorithms, for several distortion metrics and for the lossless case. Moreover, it
allows the user to define any quasi-convex distortion function to be minimized, a feature not
supported by the previous algorithms. Finally, we show that QVZ-compressed data exhibit better
performance in the genotyping than data compressed with previously proposed algorithms, in the
sense that for a similar rate, a genotyping closer to that achieved with the original quality values is
obtained.
Availability and implementation: QVZ is written in C and can be downloaded from https://github.
com/mikelhernaez/qvz.
Contact: mhernaez@stanford.edu or gmalysa@stanford.edu or iochoa@stanford.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

There has been a recent explosion of interest in genome sequencing,

driven by advancements in the sequencing technology. Although

early sequencing technologies required years to capture a 3 billion

nucleotide genome (Schatz and Langmead, 2013), genomes as large

as 22 billion nucleotides are now being sequenced within days

(Zimin et al., 2014) using next-generation sequencing technologies

(Metzker, 2010). Further, the cost of sequencing a human-length

genome has dropped from billions of dollars to merely $4000

(http://systems.illumina.com/systems/hiseq-x-sequencing-system.ilmn)

within the past 15 years (Hayden, 2014). These developments in

efficiency and affordability have allowed many to envision whole-

genome sequencing as an invaluable tool to be used in both

personalized medical care and public health (Berg et al., 2011). In

anticipation of the storage challenges that increasingly large and

ubiquitous genomic datasets could present, compression of the raw

data generated by sequencing machines has become an important

topic.

The output data of the sequencing machines is generally stored

in the widely accepted FASTQ format (Metzker, 2010). A FASTQ

file dedicates four lines to each fragment of a genome (a ‘read’)

analyzed by the sequencing machine. The first line contains a

header with some identifying information, the second lists the nu-

cleotides in the read, the third is similar to the first one and the

fourth lists a ‘quality value’ (also referred to as quality score) for

each nucleotide. The quality values are generally stored using the

Phred score, which corresponds to the particular number

Q ¼ "10log10P, where P is an estimate (calculated by the base

calling software running on the sequencing machine) of the prob-

ability that the corresponding nucleotide in the read is in error.

These scores are commonly represented in the FASTQ file with an

ASCII alphabet ½33 : 73$ or ½64 : 104$, where the value corresponds
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to Qþ33 or Qþ64, respectively. In addition, the information

contained in the FASTQ files is also found in the SAM files (Li et

al., 2009), which store the information pertaining to the alignment

of the reads to a reference.

Quality values, which comprise more than half of the com-

pressed data, have proven to be more difficult to compress than the

reads (Bonfield and Mahoney, 2013). Thus, generating better com-

pression tools for quality values is crucial for reducing the storage

required for large files. Unlike nucleotide information, the quality

values generated by sequencing machines tend to exhibit predictable

behavior within each read. Strong correlations exist between adja-

cent quality values as well as the trend that quality values degrade

drastically as a read progresses (Kozanitis et al., 2011). There is also

evidence that quality values are corrupted by some amount of noise

introduced during sequencing (Bonfield and Mahoney, 2013). These

features are well explained by imperfections in the base-calling

algorithms, which estimate the probability that the corresponding

nucleotide in the read is in error (Das and Vikalo, 2012). Further,

applications which operate on reads (referred to as ‘downstream ap-

plications’) often make use of the quality values in a heuristic man-

ner. This is particularly true for sequence alignment algorithms

(Langmead et al., 2009; Li and Durbin, 2009) and single-nucleotide

polymorphism (SNP) calling (DePristo et al., 2011; Li, 2011), the

latter having been shown to be resilient to changes in the quality val-

ues (in the sense that, in general, little is compromised in perform-

ance when quality values are modified (Ochoa et al., 2013;

Yu et al., 2014) (http://www.illumina.com/documents/products/

whitepapers/whitepaper_datacompression.pdf).

Based on these observations, lossy (as opposed to lossless) com-

pression of quality values emerges as a natural candidate for signifi-

cantly reducing storage requirements while maintaining adequate

performance of downstream applications. While rate-distortion the-

ory provides a framework to evaluate lossy compression algorithms,

the criterion under which the goodness of the reconstruction should

be assessed is a crucial question. It makes sense to pick a distortion

measure by examining how different distortion measures affect the

performance of downstream applications, but the abundance of ap-

plications and variations in how quality values are used makes this

choice too dependent on the specifics of the applications considered.

These trade-offs suggest that an ideal lossy compressor for qual-

ity values should not only provide the best possible compression and

accommodate downstream applications, but it should provide flexi-

bility to allow a user to pick a desired distortion measure and/or

rate.

In this work, we present such a scheme which we call QVZ

(‘Quality Values Zip’), which achieves significantly better rate-

distortion performance than any of the existing algorithms.

Specifically, the proposed algorithm obtains up to four times better

compression than previously proposed algorithms for the same aver-

age distortion. In addition, QVZ achieves lossless compression.

Moreover, we analyze the effect of QVZ on the genotyping and

show that better results are obtained than with the previously pro-

posed algorithms. Finally, we present some preliminary results that

suggest that lossy compression could potentially improve the geno-

typing with respect to the uncompressed data. This may be due to

the inherently noisy nature of the quality values, in ways that will be

thoroughly investigated in future work.

1.1 Survey of lossy compressors for quality values
Lossy compression for quality values has recently started to

be explored. Slimgene (Kozanitis et al., 2011) fits fixed-order

Markov encodings for the differences between adjacent quality

values and compresses the prediction using a Huffman code (ignor-

ing whether or not there are prediction errors). Q-Scores Archiver

(Wan et al., 2012) quantizes quality values via several steps of

transformations and then compresses the lossy data using an en-

tropy encoder.

Fastqz (Bonfield and Mahoney, 2013) uses a fixed-length code,

which represents quality values above 30 using a specific byte pat-

tern and quantizes all lower quality values to 2. Scalce (Hach et al.,

2012) first calculates the frequencies of different quality values in a

subset of the reads of a FASTQ file. Then the quality values which

achieve local maxima in frequency are determined. Anytime these

local maximum values appear in the FASTQ file, the neighboring

values are shifted to within a small offset of the local maximum,

thereby reducing the variance in quality values. The result is com-

pressed using an arithmetic encoder.

QualComp (Ochoa et al., 2013) applied rate-distortion theory

as a framework for designing a lossy compression algorithm when

mean-squared error (MSE) is the distortion measure. Quality value

data are first clustered using a k-means algorithm and then an opti-

mization problem is solved to minimize MSE of the compressed out-

put with respect to a rate constraint. BEETL (Janin et al., 2013)

first applies the Burrows–Wheeler Transform to reads and uses the

same transformation on the quality values. Then, the nucleotide suf-

fixes generated by the Burrows–Wheeler Transform are scanned.

Groups of suffixes which start with the same k bases while also

sharing a prefix of at least k bases are found. All the quality values

for the group are converted to a mean quality value, taken within

the group or across all the groups. RQS (Yu et al., 2014) first gener-

ates off-line a dictionary of commonly occurring k-mers throughout

a population-sized read dataset of the species under consideration.

It then computes the divergence of the k-mers within each read to

the dictionary and uses that information to decide whether to pre-

serve or discard the corresponding quality values. PBlock (Cánovas

et al., 2014) allows the user to determine a threshold for the max-

imum per-symbol distortion. The first quality value in the file is

chosen as the first ‘representative’. Quality values are then quan-

tized symbol-by-symbol to the representative if the resulting distor-

tion would fall within the threshold. If the threshold is exceeded,

the new quality value takes the place of the representative and the

process continues. The algorithm keeps track of the representatives

and run-lengths, which are compressed losslessly at the end. RBlock

(Cánovas et al., 2014) uses the same process, but the threshold in-

stead sets the maximum allowable ratio of any quality value to its

representative as well as the maximum value of the reciprocal of

this ratio. (Cánovas et al., 2014) also compared the performance of

existing lossy compression schemes for different distortion

measures.

Finally, Illumina proposed a new binning scheme for reducing

the size of the quality values. This binning scheme has been imple-

mented in the state-of-the-art compression tools CRAM (Fritz et al.,

2011) and DSRC2 (Roguski and Deorowicz, 2014).

To our knowledge, and based on the results of Cánovas et al.

(2014), RBlock, PBlock and QualComp provide the best rate-

distortion performance among existing lossy compression algo-

rithms for quality values that do not use any extra information. For

this reason, in Section 3 we use RBlock, PBlock and QualComp as a

representation of the existing state-of-the-art when comparing with

QVZ, together with CRAM and DSRC2, which apply Illumina’s

binning scheme. For completeness, we also compare the lossless per-

formance of QVZ with that of CRAM, DSRC2 (in their lossless

mode) and gzip.

2 QVZ: lossy compression of quality values
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2 Methods

As described previously, we seek to compress the quality scores pre-

sented in the genomic data. Let N be the number of quality score se-

quences to be compressed. The proposed algorithm assumes that all

the quality score sequences are of the same length L (for trimmed or

hard-clipped reads, please refer to the Supplementary Data). Each

sequence consists of ASCII characters representing the scores, be-

longing to an alphabet X , for example X ¼ ½33 : 73$. These quality

score sequences are extracted from the genomic file (e.g. FASTQ

and SAM files) prior to compression.

We model the quality score sequence X ¼ ½X1;X2; . . . ;XL$ by a

Markov chain of order one: we assume the probability that Xi takes

a particular value depends on previous values only through the value

of Xi"1. We further assume that the quality score sequences are inde-

pendent and identically distributed (i.i.d.). We use a Markov model

based on the observation that quality scores are highly correlated

with their neighbors within a single sequence, and we refrain from

using a higher order Markov model to avoid the increased overhead

and complexity this would produce within our algorithm.

The Markov model is defined by its transition probabilities

PðXijXi"1Þ, for i 2 1;2; . . . ;L, where PðX1jX0Þ ¼ PðX1Þ. QVZ finds

these probabilities empirically from the entire dataset to be com-

pressed and uses them to design a codebook. The codebook is a set

of quantizers indexed by position and previously quantized value

(the context). These quantizers are constructed using a variant of the

Lloyd–Max algorithm (Lloyd, 1982). After quantization, a lossless,

adaptive arithmetic encoder is applied to achieve entropy-rate

compression.

In summary, the steps taken by QVZ are as follows:

1. Compute the empirical transition probabilities of a Markov-1

Model from the data.

2. Construct a codebook (Section 2.2) using the Lloyd–Max algo-

rithm (Section 2.1).

3. Quantize the input using the codebook and run the arithmetic

encoder over the result (Section 2.3).

2.1 Lloyd–Max quantizer
Given a random variable X governed by the probability mass func-

tion Pð(Þ over the alphabet X of size K, let D 2 RK)K be a distortion

matrix where each entry Dx;y ¼ dðx; yÞ is the penalty for recon-

structing symbol x as y. We further define Y to be the alphabet of

the quantized values of size M*K.

Thus, a Lloyd–Max quantizer, denoted hereafter as LMð(Þ, is a

mapping X ! Y that minimizes an expected distortion. Specifically,

the Lloyd–Max quantizer seeks to find a collection of boundary

points bk 2 X and reconstruction points yk 2 Y, where

k 2 f1; 2; . . . ;Mg, such that the quantized value of symbol x 2 X is

given by the reconstruction point of the region to which it belongs

(Fig. 1). For region k, any x 2 fbk"1; . . . ;bk " 1g is mapped to yk,

with b0 being the lowest score in the quality alphabet and bM the

highest score plus one. Thus, the Lloyd–Max quantizer aims to min-

imize the expected distortion by solving

fbk; ykgM
k¼1 ¼ argmin

bk ;yk

XM

j¼1

Xbj"1

x¼bj"1

PðxÞdðx; yjÞ: (1)

To approximately solve Equation (1), which is an integer pro-

gramming problem, we employ an algorithm which is initialized with

uniformly spaced boundary values and reconstruction points taken at

the midpoint of these bins. For an arbitrary D and Pð(Þ, this problem

requires an exhaustive search. We assume that the distortion measure

d(x, y) is quasi-convex over y with a minimum at y¼x, i:e: when x*
y1* y2 or y2* y1*x; dðx; y1Þ*dðx; y2Þ. If the distortion measure is

quasi-convex, an exchange argument suffices to show the optimality

of contiguous quantization bins and a reconstruction point within the

bin. The following steps are iterated until convergence:

1. Solving for yk: We first minimize Equation (1) partially over the

reconstruction points given boundary values. The reconstruction

points are obtained as,

yk ¼ argmin
y¼fbk"1 ;...;bk"1g

Xbk"1

x¼bk"1

PðxÞdðx; yÞ; 8k ¼ 1; 2; . . . ;M: (2)

2. Solving for bk: This step minimizes Equation (1) partially over

the boundary values given the reconstruction points. bk could

range from fyk þ 1; . . . ; ykþ1g and is chosen as the largest point

where the distortion measure to the previous reconstruction

value yk is lesser than the distortion measure to the next recon-

struction value ykþ1, i.e.

bk ¼ max fx 2 fyk þ 1; . . . ; ykþ1g : PðxÞdðx; ykÞ*

PðxÞdðx; ykþ1Þg 8k ¼ 1; 2; . . . ;M" 1: (3)

Note that this algorithm, which is a variant of the Lloyd–Max

quantizer, converges in at most K steps.

Given a distortion matrix D, the defined Lloyd–Max quantizer

depends on the number of regions M and the input probability mass

function Pð(Þ. Therefore, we denote the Lloyd–Max quantizer with

M regions as LMP
Mð(Þ and the quantized value of a symbol x 2 X as

LMP
MðxÞ.
An ideal lossless compressor applied to the quantized values can

achieve a rate equal to the entropy of LMP
MðXÞ, which we denote by

HðLMP
MðXÞÞ. For a fixed probability mass function Pð(Þ, the only

varying parameter is the number of regions M. Since M needs to be

an integer, not all rates are achievable. Because we are interested in

achieving an arbitrary rate R, we define an extended version of the

LM quantizer, denoted as LME. The extended quantizer consists of

two LM quantizers with the numbers of regions given by q and

qþ 1, each of them used with probability 1" r and r, respectively

(where 0* r*1). Specifically, q is given by the maximum number

of regions such that HðLMP
qðXÞÞ < R (which implies

HðLMP
qþ1ðXÞÞ > R). Then, the probability r is chosen such that the

average entropy (and hence the rate) is equal to R, the desired rate.

More formally,

LMEP
RðxÞ ¼

(
LMP

qðxÞ; w:p:1" r;

LMP
qþ1ðxÞ; w:p: r;

q ¼ max fx 2 f1; . . . ;Kg : HðLMP
xðXÞÞ*Rg

r ¼
R"HðLMP

qðXÞÞ
HðLMP

qþ1ðXÞÞ "HðLMP
qðXÞÞ

:

(4)

Fig. 1. Example of the boundary points and reconstruction points found by a

Lloyd–Max quantizer, for M¼3
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2.2 Codebook generation
Because we assume the data follows a Markov-1 model, for a given

position i 2 f1; . . . ;Lg we design as many quantizers Qi
q as

there were unique possible quantized values q in the previous con-

text i – 1. This collection of quantizers forms the codebook for

QVZ. For an unquantized quality score Xi, we denote the quantized

version as Qi, so Q ¼ ½Q1;Q2; . . . ;QL$ is the random vector repre-

senting a quantized sequence. The quantizers are defined as

Q1 ¼ LMEPðX1Þ
aHðX1Þ (5)

Qi
q ¼ LMEPðXi jQi"1¼qÞ

aHðXi jQi"1¼qÞ; for i ¼ 2; . . . ;L (6)

where a 2 ½0; 1$ is the desired compression factor. a¼0 corresponds

to 0 rate encoding, a¼1 to lossless compression and any value in

between scales the input file size by that amount. Note that the

entropies can be directly computed from the corresponding empir-

ical probabilities.

Next we show how the probabilities needed for the LMEs are

computed.

2.2.1 Computation of the probability P

To compute the quantizers defined above, we require PðXiþ1jQiÞ,
which must be computed from the empirical statistics PðXiþ1jXiÞ
found earlier. The first step is to calculate PðQijXiÞ recursively and

then to apply Bayes rule and the Markov Chain property to find the

desired probability:

PðQijXiÞ ¼
X

Qi"1

PðQi;Qi"1jXiÞ

¼
X

Qi"1

PðQijXi;Qi"1Þ
X

Xi"1

PðQi"1;Xi"1jXiÞ

¼
X

Qi"1

PðQijXi;Qi"1Þ
X

Xi"1

PðQi"1jXi"1;XiÞPðXi"1jXiÞ

¼
X

Qi"1

PðQijXi;Qi"1Þ
X

Xi"1

PðQi"1jXi"1ÞPðXi"1jXiÞ

(7)

Equation (7) follows from the fact that Qi"1 $ Xi"1 $ Xi form a

Markov chain. Additionally, PðQijXi;Qi"1 ¼ qÞ ¼ PðQi
qðXiÞ ¼ QiÞ,

which is the probability that a specific quantizer produces Qi given

previous context q. This can be found directly from r [defined in

Eq. (4)] and the possible values for q. We now proceed to compute

the required conditional probability as

PðXiþ1jQiÞ ¼
X

Xi

PðXijQiÞPðXiþ1jXi;QiÞ

¼
X

Xi

PðXijQiÞPðXiþ1jXiÞ
(8)

¼ 1

PðQiÞ
X

Xi

PðQijXiÞPðXi;Xiþ1Þ; (9)

where Equation (8) follows from the same Markov chain as earlier.

Terms in Equation (9) are: (i) PðXi;Xiþ1Þ: joint pmf computed em-

pirically from the data, (ii) PðQijXiÞ: computed in Equation (7) and

(iii) PðQiÞ: normalizing constant given by

PðQi ¼ qÞ ¼
X

Xi

PðQi ¼ qjXiÞPðXiÞ:

The steps necessary to compute the codebook are summarized in

Algorithm 1. Note that supportðXÞ denotes the support of the

random variable X or the set of values that X takes with non-zero

probability.

Algorithm 1 Generate codebook

Input: Transition probabilities PðXijXi"1Þ, compression factor a
Output: Codebook: collection of quantizers fQl

qg
P PðX1Þ
Compute and store Q1 based on P using Equation (5)

for all columns i¼2 to L do

Compute PðQi"1jXi"1 ¼ xÞ 8x 2 supportðXi"1Þ
Compute PðXijQi"1Þ 8q 2 supportðQi"1Þ
for all q 2 supportðQi"1Þ do

P PðXijQi"1 ¼ qÞ
Compute and store Qi

q based on P using Equation (6)

end for

end for

2.3 Encoding
The encoding process is summarized in Algorithm 2. First, we gener-

ate the codebook and quantizers. For each read, we quantize all

scores sequentially, with each value forming the left context for the

next value. As they are quantized, scores are passed to an adaptive

arithmetic encoder, which uses a separate model for each position

and context. For a detailed explanation of the arithmetic encoder,

we refer the reader to the Supplementary Data.

Algorithm 2. Encoding of quality scores

Input: Set of N reads fXjgN
j¼1

Output: Set of quantizers fQl
qg (codebook) and compressed

representation of reads

Compute empirical statistics of input reads

Compute codebook fQl
qg according to Algorithm 1

for all j¼1 to N do

½X1; . . . ;XL$ Xj

Q1  Q1ðX1Þ
for all i¼2 to L do

Qi  Qi
Qi"1
ðXiÞ

end for

Pass ½Q1; . . . ;QL$ to arithmetic encoder

end for

2.4 Clustering
The performance of the compression algorithm depends on the con-

ditional entropy of each quality score given its predecessor. Earlier

we assumed that the data were all i.i.d., but it is more effective to

allow each read to be independently selected from one of several dis-

tributions. If we first cluster the reads into C clusters, then the vari-

ability within each cluster may be smaller. In turn, the conditional

entropy would decrease and fewer bits would be required to encode

Xi at a given distortion level, assuming that an individual codebook

is available unique to each cluster.

Thus, QVZ has the option of clustering the data prior to compres-

sion. Specifically, it uses the K-means algorithm (MacQueen et al.,

1967), initialized using C quality value sequences chosen at random

from the data. It assigns each sequence to a cluster by means of

Euclidean distance. Then, the centroid of each cluster is computed as

4 QVZ: lossy compression of quality values

 at Stanford U
niversity on O

ctober 23, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv330/-/DC1
http://bioinformatics.oxfordjournals.org/


the mean vector of the sequences assigned to it. Because of the lack of

convergence guarantees, we have incorporated a stop criterion that

avoids further iterations once the centroids of the clusters have moved

less than U units (in Euclidean distance). The parameter U is set to 4

by default, but it can be modified by the user. Finally, storing which

cluster each read belongs to incurs a rate penalty of at most log2ðCÞ=
L bits per symbol, which allows QVZ to reconstruct the series of

reads in the same order as they were in the uncompressed input file.

3 Results and discussion

To assess the performance of the proposed algorithm QVZ, we com-

pare it with the state of the art lossy compression algorithms

PBlock, RBlock (Cánovas et al., 2014) and QualComp (Ochoa et

al., 2013). We also consider CRAM (Fritz et al., 2011), DSRC2

(Roguski and Deorowicz, 2014) and gzip. In this assessment,

we focus on two aspects that we believe are important: the rate-

distortion curve and the behavior in genotyping. The rate-distortion

curve provides a framework for comparison that is independent of

the downstream applications, which vary significantly in their use of

quality scores. It also gives a measure of fidelity for each of the algo-

rithms: how similar are the reconstructed quality scores to the ori-

ginal values? On the other hand, examining the behavior in

genotyping aims to provide a comparison on how the different lossy

compressors affect the downstream applications, which are widely

used in practice. Specifically, we focus on SNP calling, because ana-

lyzing the effects of lossy compression on this application is of sig-

nificant importance in practice.

The dataset used for our analysis is the NA12878.HiSeq.

WGS.bwa.cleaned.recal.hg19.20.bam, which corresponds to the

chromosome 20 of a Homo sapiens individual. We downloaded it

from the GATK bundle (http://tiny.cc/3i49tx). This dataset pertains

to one of the most studied human individuals in the literature

(DePristo et al., 2011; Zook et al., 2014), making it a suitable base-

line for comparison. We generated the SAM file from the BAM file

and then extracted the quality score sequences from it. The dataset

contains 51, 585, 658 sequences, each of length 101. We consider

four more datasets for our study, namely, the chromosome 20 of the

H.sapiens dataset SRR622461, the whole genome of a

Saccharomyces cerevisiae (SRR1179906) and two ChIP-Seq datasets

from a Mus musculus (SRR32209) and a Drosophila melanogaster

(ERR011354). Because of space constraints, their analyses are pre-

sented in the Supplementary Data.

The machine used to perform the experiments has the following

specifications: 39 GB RAM, Intel Core i7-930 CPU at 2.80 GHz x 8

and Ubuntu 12.04 LTS.

The next two subsections report on the results of our study as

they pertain to rate-distortion and genotyping, respectively.

3.1 Rate-Distortion analysis
First, we describe the options used to run each algorithm. QVZ was

run with the default parameters, multiple rates and different number

of clusters. PBlock and RBlock (http://tiny.cc/kg49tx) were run with

different values of p and r, respectively, and with m¼1 (the default

value). QualComp (http://tiny.cc/9b49tx) was run with three clus-

ters and multiple rates, and CRAM and DSRC2 were run with the

lossy mode that implements Illumina’s proposed binning scheme.

Finally, we also run each of the mentioned algorithms in the lossless

mode, except QualComp, since it does not support lossless compres-

sion. We refer the reader to the Supplementary Data for more

details.

QVZ can minimize any quasi-convex distortion, if the corres-

ponding matrix is provided, or any of the following three built-in

distortion metrics: (i) the average MSE, where dðx; yÞ ¼ jx" yj2;

(ii) the average L1 distortion, where dðx; yÞ ¼ jx" yj and (iii) the

average Lorentzian distortion, where dðx; yÞ ¼ log2ð1þ jx" yjÞ.
Hereafter, we refer to each of them as QVZ-M, QVZ-A and

QVZ-L, respectively. QVZ can also perform clustering prior to

compression—similar to QualComp– using a user-specified number

of clusters, so we ran it with 1, 3 and 5 clusters for each distortion

metric to examine the effects of clustering on the rate-distortion

curve.

Assuming N reads of length L each, the distortion D used to

compare the different algorithms is computed as

D ¼ 1

NL

XN

k¼1

XL

i¼1

dðxiðkÞ; yiðkÞÞ; (10)

where xiðkÞ denotes the quality score value of read k at position i,

yiðkÞ the corresponding reconstructed value (after lossy compres-

sion) and dð(; (Þ the distortion metric under consideration. Since

QVZ can select to optimize for MSE, L1 or Lorentzian distortions,

we provide results for all three. Any other distortion metric can be

used for comparison, but we limit our attention to these three due to

space constraints and refer the reader to the Supplementary Data for

results on other distortion metrics. As a measure of rate, we use the

final size of the quality score sequences after compression. The re-

sults are presented in Figure 2.

As can be seen in Figure 2, QVZ outperforms the previously pro-

posed algorithms for all three choices of distortion metric.

Fig. 2. Rate-distortion curves of PBlock, RBlock, QualComp and QVZ, for MSE,

L1 and Lorentzian distortions. In QVZ, c1, c3 and c5 denote 1, 3 and 5 clusters,

respectively
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Furthermore, although QualComp reconstructs the quality score

sequences in a different order, QVZ maintains the original order.

This is achieved by storing the cluster to which each quality score se-

quence belongs, in contrast to QualComp which produces one file

per cluster. Note that storing this information for C clusters would

incur a cost of approximately Nlog2C bits, assuming uniform distri-

bution of sequences across the clusters, which is not included for

QualComp in Figure 2.

The lossy modes of CRAM and DSRC2 can each achieve only one

rate-distortion point, and both are outperformed by QVZ. We further

observe that although QualComp outperforms RBlock and PBlock

for low rates (in all three distortions), the latter two achieve a smaller

distortion for higher rates. QVZ, however, outperforms all previously

proposed algorithms in both low and high rates. QVZ’s advantage be-

comes especially apparent for distortions other than MSE.

It is also significant that QVZ achieves a zero distortion at a rate

at which the other lossy algorithms exhibit positive distortion. In other

words, QVZ achieves lossless compression faster than QualComp,

RBlock or PBlock. In fact, due to its design, QualComp cannot

achieve lossless compression, even for very high rates. Moreover,

QVZ also outperforms the lossless compressors CRAM and gzip and

achieves similar performance to that of DSRC2 (Table 1).

Finally, we observe that applying clustering prior to compression

in QVZ is especially beneficial at low rates. For higher rates, the per-

formance of 1, 3 and 5 clusters is almost identical. Therefore we rec-

ommend using multiple clusters at low rates for better distortion

and 1 cluster at high rates for faster compression.

The results obtained from this analysis are in line with the ones

presented in the Supplementary Data for the other studied datasets.

QVZ compares favorably with the other schemes insofar as run-

ning times are concerned. For example, it requires approximately 13

min to compress the analyzed dataset with one cluster and 12 min to

decompress it. If three clusters are used instead, the compression

time increases to 18 min. QualComp, on the other hand, takes more

than 1 h to cluster the data (if more than one cluster is used): around

90 min to compute the necessary statistics and 20 min to finally com-

press the quality scores. The decompression is done in 15 min.

DSRC2 requires 20 min to compress and decompress, whereas

CRAM employs 14 min to compress and 4 min to decompress.

Finally, both Pblock and Rblock take around 4 min to compress and

decompress, being the algorithms with the least running times

among those that we analyzed. The running times of gzip to com-

press and decompress are 7 and 30 min, respectively.

In terms of memory usage, QVZ uses 5.7 GB to compress the

analyzed dataset and less than 1 MB to decompress, whereas

QualComp employs less than 1 MB for both operations. Pblock and

Rblock have more memory usage than QualComp, but this is still

below 40 MB to compress and decompress. DSRC2 uses 3 GB to

compress and 5 GB to decompress, whereas CRAM employs 2 GB

to compress and 3 GB to decompress. Finally, gzip uses less than

1 MB for both operations.

3.2 Genotyping analysis
To perform the genotyping analysis, and following a similar analysis

to the one presented in Cánovas et al. (2014), we compare the SNP

calling of the original SAM file with that obtained when the quality

values are replaced with the reconstructed quality values. Note that

we replace the quality scores directly in the SAM file: we do not re-

generate the SAM file by running an alignment program. The reason

is that similar to SNP calling, the alignment program uses quality

values (in general) to generate the alignment, and thus by running

both it will become impossible to separate the effect that quality

scores have on SNP calling from alignment. Note that if the align-

ment program does not use the quality values [e.g. BWA (Li and

Durbin, 2009)], modifying them in the original SAM file is equiva-

lent to re-running the alignment program.

We use the programs provided by the HTS library (http://www.

htslib.org) to perform SNP calling, with the parameters and com-

mands suggested by the SNP calling workflow therein (exact com-

mands can be found in the Supplementary Data). Any SNP calling

program could have been used for this purpose.

Figure 3 shows the number of false negatives (FN) versus the

number of false positives (FP) with respect to the uncompressed

version. The point (0, 0) corresponds to lossless compression. We

chose to show the performance of QVZ-M with three clusters for

the sake of clarity, although similar performance was obtained for

the other configurations of QVZ (see the Supplementary Data). As

shown previously in the rate-distortion analysis, QVZ achieves

lossless compression and thus same genotyping as the uncom-

pressed version, with a file size of only 1626 MB, while RBlock

needs 3229 MB. On the other hand, QualComp behaves similarly

to QVZ, although its files are generally larger for the same geno-

typing results. Moreover, QualComp cannot achieve the same gen-

otyping as the uncompressed version as it cannot generate a

lossless file. When comparing with Illumina’s binning, we observe

that QVZ achieves a similar point in the genotyping with 491 MB,

whereas DSRC2 and CRAM need 646 MB and 980 MB,

respectively.

The differences in convergence to the lossless genotyping be-

tween QVZ (and QualComp) and both PBlock and RBlock for this

dataset are very interesting. While the variant calling of PBlock- and

RBlock-reconstructed data does not generate many FP, it misses

several SNPs (i.e., it generates more FN) before achieving perfect

genotyping. On the other hand, using QVZ- and QualComp-recon-

structed data seems to result in more calls with higher compression

ratios. This behavior makes the number of FP increase as the file size

decreases, while the number of true positives remains almost con-

stant for different sizes. Even with a high compression ratio (small

size), the observed number of true positives is nearly identical to the

Table 1. Lossless results of the different algorithms for the
NA12878 dataset

QVZ (3 clusters) PBlock RBlock DSRC2 CRAM gzip

Size (MB) 1632 3229 1625 2000 1999

Fig. 3. SNP calling results of the original SAM file (NA12878), denoted as

uncompressed, and those generated with the different lossy compression al-

gorithms. Note that the y-axis refers to the FNs times minus one

6 QVZ: lossy compression of quality values

 at Stanford U
niversity on O

ctober 23, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv330/-/DC1
http://www.htslib.org
http://www.htslib.org
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv330/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv330/-/DC1
http://bioinformatics.oxfordjournals.org/


uncompressed version. Similar results are observed in the extra ana-

lyses provided in the Supplementary Data.

This observation provided the motivation for our next experi-

ment. Specifically, we wanted to explore whether among the FP

called with QVZ (especially for low rates), there were actually true

positives that were missed with the original SAM file. This situation

is conceivable, as the quality scores are inherently noisy, so their

lossy compression may serve to denoise them as well, thereby boost-

ing the inferential power of the downstream applications. To verify

if this was the case, we compared the SNP calling generated with the

modified SAM files with what we refer to as the ‘ground truth’. In

particular, the ‘ground truth’ corresponds to the SNPs called over

the same individual after following the Best Practices workflow for

SNP calling provided by the Broad Institute. The corresponding

VCF file containing the SNPs can be found in the Broad Institute

Resource Bundle. Note that the SAM file used for this purpose has

been previously pre-processed according to the Best Practices pro-

vided by the Broad Institute, thus removing most of the FP intro-

duced by duplicates and bad alignments around indels.

Figure 4 shows the difference between the number of TPs and

FPs called with the uncompressed version and the different lossy ver-

sions with respect to the ‘ground truth’. A similar convergence to the

lossless case can be seen, just as before when comparing to the un-

modified SAM file. In the case of PBlock and RBlock, no new TPs

are found. This seems to be a consequence of the fact that fewer

SNPs are called than with the uncompressed version. Moreover,

fewer FP are also called than with the uncompressed version, as

shown in the lower-left quadrant of the figure. We also observe that

with QVZ, fewer FPs and more TPs are obtained than those

obtained with the Illumina’s binning, while achieving more

compression.

The upper-left quadrant deserves special attention. It contains

those cases where not only are more true positives achieved, but

there are also fewer FN. This means that in these cases the genotyp-

ing improves over the uncompressed version. It is intriguing to ob-

serve that all the files above 700 MB generated with our proposed

algorithm QVZ are in this quadrant. A similar behavior is also

observed when the ‘ground truth’ is chosen as the one provided by

the NIST Proposed Standard, as shown in the Supplementary Data.

This is a very interesting finding, as it seems to suggest that the pro-

posed lossy compressor can potentially be used not only as a means

to reduce the storage requirements but also for improving the down-

stream analysis performed on the data. These preliminary findings

are admittedly anecdotal. However, they provide a glance of the

potential of applying lossy compression for genotype improvement.

Further analysis in this direction is left for future research.

4 Conclusion

In this work, we have presented QVZ, a new lossy compression

algorithm for quality scores in genomic data. The proposed

algorithm can work for several distortion metrics, including any

quasi-convex distortion metric provided by the user, a feature not

supported by the previously proposed algorithms. Moreover, it ex-

hibits better rate-distortion performance. Unlike some of the pre-

viously proposed algorithms, QVZ also allows for lossless

compression and a seamless transition from lossy to the lossless

with increasing rate. Moreover, we have shown that in compari-

son to previously proposed lossy algorithms, using QVZ-

compressed data achieves genotyping performance closer to that

obtained with uncompressed quality values, for similar compres-

sion rates.

Finally, we have obtained some preliminary and promising re-

sults which suggest that lossy compression could be beneficial not

only for storage and transmission but also for boosting performance

in downstream applications. The extent of this phenomenon, the re-

lation between the distortion criterion, the compression rate, the

characteristics of the noise in the quality values and the resulting

performance boosts are due further investigation.
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