
Supplementary Data of manuscript

“Effect of lossy compression of quality scores

on SNP calling”

Mikel Hernaez, Idoia Ochoa, Rachel Goldfeder,

Euan Ashley and Tsachy Weissman

1 SNP calling pipelines in depth

In this section we explain in more detail the different pipelines used in this

work to analyze the effect that lossy compression of the quality scores has on

the SNP calling. As mentioned in the main manuscript, all the considered

pipelines have a preprocessing step that is common to all of them. We start

by showing the commands of this preprocessing step, and specifying the

commands for the variant calling and filtering steps that are specific for each

pipeline. Finally, we show how the true positives and false positives were

extracted.

1.1 Preprocessing step:

This preprocessing step takes as input a FASTQ file and outputs a SAM/BAM

file. In theory, to analyze the effect that lossy compression of quality scores

has on the SNP calling, the quality scores of the FASTQ file should be re-

placed by those generated by a lossy compressor. However, as we will see,

some of the first commands of this preprocessing step do not use the quality

scores, and thus it is not necessary to replace them directly on the FASTQ

1

file. Next, we show the commands of the preprocessing step, as well as the

point where the quality scores are extracted, compressed, and replaced by

the ones generated after decompression.

The first step is to align the pair-end FASTQ files to the reference. We

use bwa mem as the alignment program and the NCBI build 37 of the Human

reference1 as the reference genome. We have included the -M option in bwa

mem for compatibility with Picard tools.

$ bwa mem -t 4 -M ref.fa read_1.fastq read_2.fastq > aln.sam

Then we convert the SAM file to BAM using samtools,

$ samtools view -b aln.sam > aln.bam

and sort and index the BAM file.

$ samtools sort aln.bam aln.sorted.bam

$ samtools index aln.sorted.bam

We mark of the duplicates using Picard tools [1],

$ java -jar MarkDuplicates.jar INPUT=aln.sorted.bam \

OUTPUT=aln.sorted.prededup.bam METRICS_FILE=metrics.txt

and add the read group information.

$ java -jar AddOrReplaceReadGroups.jar INPUT=aln.sorted.prededup.bam \

OUTPUT=aln.sorted.dedup.bam RGID=group1 RGLB=lib1 \

RGPL=illumina RGPU=unit1 RGSM=sample1

We remove the chimeric alignments and the duplicates,

$ samtools view -hb -sF 0xF00 aln.sorted.dedup.bam > aln.cleaned.bam

extract the desire section L, and index the resulting file.

$ samtools view -h -b aln.cleaned.bam L > aln.sorted.L.bam

1http://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.13/

2

$ samtools index aln.sorted.L.bam

Note that all the aforementioned steps do not make use of the quality

scores, whereas the next ones do. Thus, we extract the quality scores at this

point for compression, and replace them by the reconstructed ones. Specifi-

cally, we first convert the BAM file to a SAM file.

$ samtools view -h aln.cleaned.L.bam > aln.cleaned.L.sam

Then we extract the Quality Scores and the Flag fields from the SAM file

(the python script is a modified version of the one provided by [2] and it is

included with all the scripts in the repository mentioned in the paper).

$ python extract_QualAndFlag.py aln.cleaned.L.sam

Note that some of the quality score vectors presented in the SAM file

correspond to the reverse of the equivalent vector found in the FASTQ file.

By extracting the flag field we are able to reverse that operation, so that the

quality scores that we extract are as if they were extracted from the FASTQ

file. We then compress the quality scores with a lossy compressor and replace

them by the reconstructed ones (we use again the flag field to reverse the

necessary ones). We do that with the following script:

$ python ./ change_QualwFlag.py $originalSam $originalFlag \

$qual_file $newSam

We then convert the SAM file back to a BAM file:

$ samtools view -bT $HumanReference -h -o $bamFile $newSam

- Further preprocessing for the GATK and the htslib.org pipelines:

The GATK and htslib.org pipelines require some further steps, that we

describe next. Specifically, we perform a local Indel realignment, which is

performed using GATK. The commands used in this paper to perform the

3

local Indel realignment are:

Create the target list of intervals:

$ java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator \

-R pathHumanReference -L targetRegion -I bamFile \

-known bundle_2 .8/ Mills_and_1000G_gold_standard.indels.b37.vcf \

-o target_intervals_list

Perform Realignment:

$ java -jar GenomeAnalysisTK.jar -T IndelRealigner \

-R pathHumanReference -L targetRegion -I bamFile \

-targetIntervals target_intervals_list \

-known bundle_2 .8/ Mills_and_1000G_gold_standard.indels.b37.vcf \

-o bamFile_realign

Then, a recalibration of the quality scores is performed using the following

two commands:

$ java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R pathHumanReference \

-I bamFile_realign -L targetRegion \

-knownSites bundle_2 .8/ dbsnp_138.b37.vcf \

-knownSites bundle_2 .8/ Mills_and_1000G_gold_standard.indels.b37.vcf \

-knownSites bundle_2 .8/1000 G_phase1.indels.b37.vcf -o recal_data

$ java -jar GenomeAnalysisTK.jar -T PrintReads -R pathHumanReference \

-I bamFile_realign -L targetRegion -BQSR recal_data -o bamFile_recal

This concludes the preprocessing step. The resulting file serves as input to

the variant callers of each of the pipelines. The commands for these pipelines

are described next.

1.2 Variant Calling and Filtering steps:

- GATK pipeline:

We use the Haplotype Caller as the variant caller for the GATK pipeline.

$ java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R pathHumanReference \

-I bamFile_recal -L targetRegion --dbsnp bundle_2 .8/ dbsnp_138.b37.vcf \

- -genotyping_mode DISCOVERY -stand_emit_conf 10 -stand_call_conf 30 -o outputVCF

4

Once the calls are made, we extract the SNPs using:

$ java -jar GenomeAnalysisTK.jar -T SelectVariants -R pathHumanReference \

-V input.vcf -L targetRegion -selectType SNP -o outputSNPS

We further filter the calls either using a hard filter:

$ java -jar GenomeAnalysisTK.jar -R pathHumanReference -T VariantFiltration \

-L targetRegion -V input.vcf --filterExpression ‘‘filterExpression ’’ \

--filterName ‘‘filterName ’’ -o outputFilteredVCF

where the filter expression name is given by “QD < 2.0 || FS > 60.0 || MQ <

40.0 || HaplotypeScore > 13.0 || MQRankSum < −12.5 || ReadPosRankSum

< −8.0”, or using the VQSR command:

$ java -jar GenomeAnalysisTK.jar -R $pathHumanReference \

-T VariantRecalibrator -L $targetRegion -input input.vcf \

-resource:$resource1 -resource:$resource2 -resource:$resource3 \

-resource:$resource4 $recalParams -mode SNP \

-tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 \

-recalFile $recalFile -tranchesFile $tranchesFile -rscriptFile $rscriptFile \

"$filterExpression" --filterName "$filterName" -o $outputFilteredVCF

- htslib.org pipeline:

We call the variants using two commands. First the mpileup command from

Samtools, and then the call command from BCFtools:

$ samtools mpileup -ugf $pathHumanReference $bamFile_recal |

bcftools call -vmO v -o $outputVCF

Once the calls are made, we extract the SNPs using:

$ java -jar GenomeAnalysisTK.jar -T SelectVariants -R pathHumanReference \

-V input.vcf -L targetRegion -selectType SNP -o outputSNPS

After calling the SNPs the following filter is applied:

$ bcftools filter -O v -o $outputFilteredVCF -s $filterName \

-i $filterExpression $outputSNPS \

--refFile=$pathHumanReference --output=$outputVCF

- Platypus pipeline:

We call the variants using the Platypus variant caller:

5

$ python Platypus_0 .8.1/ Platypus.py callVariants --bamFiles=$bamFile \

--refFile=$pathHumanReference --output=$outputVCF

Once the calls are made, we extract the SNPs using:

$ java -jar GenomeAnalysisTK.jar -T SelectVariants -R pathHumanReference \

-V input.vcf -L targetRegion -selectType SNP -o outputSNPS

No further filtering is performed in this pipeline.

1.3 True and False positive extraction:

Finally, the true and false positives in each of the generated VCF files are

computed using the SelectVariants command from the GATK toolkit. For

example, to generate the false positives the command would be:

$ java -jar GenomeAnalysisTK.jar -R $pathHumanReference \

-T SelectVariants -L $targetRegion --variant $vcf_file \

--discordance $goldenStandardVCF -o $outputFPVCF

2 INDEL calling pipelines in depth

In this section we detail the different pipelines used to analyze the effect that

lossy compression of base quality scores has on the INDEL calling.

2.1 Preprocessing

First, we align paired-end FASTQ files to the reference. We use BWA mem

for sequence read alignment to the human reference genome hg19 from UCSC.

$ bwa mem -M -R "@RG\tID:sim\tSM:sim" $ref ${file_prefix }1.fq \

${file_prefix }2.fq > ${file_prefix }.sam

Then we convert the SAM file to BAM,

$ samtools view -b -S ${file_prefix }.sam > ${file_prefix }.bam

6

and finally, sort, remove PCR duplicates and index the BAM file:

$ samtools sort ${file_prefix }.bam ${file_prefix }. sorted

$ samtools rmdup ${file_prefix }. sorted.bam \

${file_prefix }. sorted.rmdup.bam

$ samtools index ${file_prefix }. sorted.rmdup.bam

2.2 Variant Calling and Filtering Steps

- Dindel (version 1.01):

We first extract the indels from the bam file and infer library insert size

distribution.

$ dindel --analysis getCIGARindels --bamFile ${prefix }.bam \

--outputFile ${prefix }. dindel_output --ref ${ref}

Then, make realignment windows

$ python makeWindows.py --inputVarFile \

${prefix }. dindel_output.variants.txt --windowFilePrefix \ window_files_${prefix }/${prefix }. realign_windows \

--numWindowsPerFile 1000

to later realign all windows.

for a in ‘ls window_files_${prefix }/*‘

do

i=‘echo $a | sed ’s/.txt$//’ | sed ’s/.* realign_windows \.//’‘

$ dindel --analysis indels --doDiploid --bamFile $bam --ref ${ref} \

--varFile window_files_${prefix }/${prefix }. realign_windows.${i}.txt \

--libFile ${prefix }. dindel_output.libraries.txt \

--outputFile ${prefix }. dindel_stage2_output_windows.${i}

We finally integrate the results into a VCF file with the following two com-

mands,

7

$ ls ${prefix }. dindel_stage2_output_windows .*.glf.txt >> \

${prefix }. dindel_stage2_outputfiles.txt

$ python mergeOutputDiploid.py \

--inputFiles ${prefix }. dindel_stage2_outputfiles.txt \

--outputFile ${prefix }. variantCalls.VCF --ref ${ref}

and filter the results

$ vcftools --remove -filtered hp10 --recode \

--remove -filtered q20 --vcf ${prefix }. variantCalls.VCF \

--out ${prefix }. dindel.filtered.vcf

- FreeBayes:

We run FreeBayes with the following command:

$ freebayes -f ${ref} ${prefix }.bam > ${prefix }.vcf

and extract the INDELS as:

$ vcftools --keep -only -indels --recode --vcf ${prefix }.vcf \

--out ${prefix }. freebayes.filtered.vcf

- Preprocessing for Unified Genotyper:

First, we perform realignment around the INDELS by first creating the tar-

gets:

$ java -jar -Xmx10g GenomeAnalysisTK.jar \

-T RealignerTargetCreator \

-R $ref\

-o $sample.intervals \

-I $sample.bam \

--known Mills_and_1000G_gold_standard.indels.hg19.vcf \

--known 1000 G_phase1.indels.hg19.vcf

and then performing the actual realignment:

$ java -jar -Xmx10g GenomeAnalysisTK.jar \

-T IndelRealigner \

-R $ref\

-o $sample.realigned.bam \

-targetIntervals $sample.intervals \

8

-I $sample.bam \

--knownAlleles Mills_and_1000G_gold_standard.indels.hg19.vcf \

--knownAlleles 1000 G_phase1.indels.hg19.vcf

We then clip the reads

$ java -Xmx10g -jar GenomeAnalysisTK.jar \

-T ClipReads \

-I $sample.realigned.bam \

-o $sample.realigned.clipped.bam \

-R $ref \

-CT 500 -1000 \

-CR WRITE_Q0S \

-os $sample.clipped.txt

and compute Base Score Quality Recalibration (BSQR)

$ java -Xmx10g -jar GenomeAnalysisTK.jar \

-T BaseRecalibrator \

-I $sample.realigned.clipped.bam \

-R $ref \

-knownSites dbsnp_137.hg19.vcf \

-knownSites Mills_and_1000G_gold_standard.indels.hg19.vcf \

-knownSites 1000 G_phase1.indels.hg19.vcf \

-o $sample.recal_data.grp \

-nct 4 \

-filterMBQ

We finally print the reads,

$ java -jar -Xmx10g GenomeAnalysisTK.jar \

-T PrintReads \

-R $ref \

-I $sample.realigned.clipped.bam \

-BQSR $sample.recal_data.grp \

-o $sample.final.bam

reduce the size for lightweight storage

$ java -Xmx10g -jar GenomeAnalysisTK.jar \

-R $ref \

-T ReduceReads \

-I $sample.final.bam \

-o $sample.rr.final.bam

and index the final bam

9

$ samtools index $sample.rr.final.bam

- Unified Genotyper:

After the preprocessing described above we run the Unified Genotyper variant

caller as following:

$ java -Xmx8g -jar GenomeAnalysisTK.jar \

-T UnifiedGenotyper \

-R $ref \

-I $sample.bam \

-glm INDEL \

-stand_call_conf 30 \

-o $sample.UG.vcf

and filter the ouput:

$ java -Xmx8g -jar GenomeAnalysisTK.jar \

-T VariantFiltration \

-R $ref \

--variant $vcf \

--filterExpression "QD < 2.0" \

--filterName "QD" \

--filterExpression "ReadPosRankSum < -20.0" \

--filterName "ReadPosRankSum" \

--filterExpression "FS > 200.0" \

--filterName "FS" \

-o ${vcf}. filtered.vcf

- Preprocessing for Haplotype Caller:

First, we perform realignment around the INDELS by first creating the tar-

gets:

$ java -jar -Xmx10g GenomeAnalysisTK.jar \

-T RealignerTargetCreator \

-R $ref\

-o $sample.intervals \

-I $sample.bam \

--known Mills_and_1000G_gold_standard.indels.hg19.vcf \

and then performing the actual realignment:

$ java -jar -Xmx10g GenomeAnalysisTK.jar \

-T IndelRealigner \

10

-R $ref\

-o $sample.realigned.bam \

-targetIntervals $sample.intervals \

-I $sample.bam \

--known Mills_and_1000G_gold_standard.indels.hg19.vcf \

Next, we analyze patterns of covariation:

$ java -jar -Xmx10g GenomeAnalysisTK.jar \

-T BaseRecalibrator \

-R $ref \

-I $sample.realigned.bam \

-knownSites $dbsnp \

-knownSites Mills_and_1000G_gold_standard.indels.hg19.vcf \

-o $sample.recal_data.table

We do a second pass to analyze covariation after recalibration

$ java -jar -Xmx10g GenomeAnalysisTK.jar \

-T BaseRecalibrator \

-R $ref \

-I $sample.realigned.bam \

-knownSites $dbsnp \

-knownSites Mills_and_1000G_gold_standard.indels.hg19.vcf \

-BQSR $sample.recal_data.table \

-o $sample.post_recal_data.table

Apply recalibration to sequence data

$ java -jar GenomeAnalysisTK.jar \

-T PrintReads \

-R $ref \

-I $sample.realigned.bam \

-BQSR $sample.post_recal_data.table \

-o $sample.recal_reads.bam

- HaplotypeCaller:

After the preprocessing described above we run the HaplotypeCaller variant

caller as following:

$ java -Xmx8g -jar GenomeAnalysisTK.jar \

-T HaplotypeCaller \

-R $ref \

-I $sample.recal_reads.bam \

--genotyping_mode DISCOVERY \

11

-stand_emit_conf 10 \

-stand_call_conf 30 \

-o $sample.variants.HC.vcf

Extract INDELs

$ java -jar GenomeAnalysisTK.jar \

-T SelectVariants \

-R $ref \

-V $sample.variants.HC.vcf \

-selectType INDEL \

-o $sample.raw_indels.vcf

and filter the ouput:

$ java -Xmx8g -jar GenomeAnalysisTK.jar \

-T VariantFiltration \

-R $ref \

--V $sample.raw_indels.vcf \

-filterExpression "QD <2.0||FS >200.0|| ReadPosRankSum <-20.0" \

--filterName "bestPractices_indel_filter" \

-o ${vcf}. filtered.vcf

3 Lossy Compressors

In this section we describe the commands of each of the lossy compressors,

together with the parameters that we employ in each of them.

3.1 QVZ

For SNP calling, we have run QVZ for nine rates:

R = {0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1},

two different cluster sizes:

C = {1, 3},

and three different distortions. Regarding the distortions, QVZ computes

the distortions as a matrix D where its position of the matrix Dij is the cost

12

of representing i as j. It comes with three built-in distortions, namely:

D = {M,A,L},

where Mij = |i − j|2, Aij = |i − j| and Lij = log(1 + |i − j|), which are the

ones used for the analysis.

For indel calling, we have run QVZ for rates R = {0,0.3,0.7,0.9}, 3 clusters

and MSE distortion. The selection of MSE distortion and 3 clusters is based

on the results presented for the SNPs.

When a built-in distortion is used the command used to compress the

quality scores is:

$ qvz -f R -c C -d D -u reconstructed.quals -s input.quals compressed.out

where R indicates the rate, C the number of clusters and D the distortion

used.

3.2 R/Block

For SNP calling, we have run PBlock with the following values of p:

p = {1, 2, 4, 8, 16, 32}

and RBlock with the following values of r:

r = {3, 8, 10, 11, 12, 15, 20, 25, 30}.

For indel calling we have chosen the following values: p = {2,8,16} and r

= {3,8, 10}.
The commands used for the compression of the quality scores are for

PBlock:

$ CompressQualFile input.quals -q 1 -m 1 -l p

and for RBlock:

$ CompressQualFile input.quals -q 2 -m 1 -l r

13

The command for decompression is the same in both cases and it is given by:

$ DecompressQual compressed.cqual

3.3 Illumina Binning - DSRC2

In order to compress the quality scores using the binning proposed by Illu-

mina, we choose the FASTQ file compressor DSRC2. Unfortunately, DSRC2

does not have the option of solely compressing the quality scores, thus some

preprocessing of the file is needed.

We start by creating a dummy FASTQ file where the quality scores are

the ones in the SAM file [reverse complemented if needed], and the identifiers

and reads are all set to the same values. Since DSRC2 uses an arithmetic

encoder, the identifiers and reads will not account for almost any space of

the compressed file (see [3] for more details of this preprocessing). After the

dummy FASTQ file is created, the following command is used for compres-

sion:

$ dsrc c -m2 -l input_dummy.fastq output.compressed

The decompression is done using the command:

$ dsrc d input.compressed ouptut.dsrc2.fastq

Finally, the quality scores are extracted from the reconstructed FASTQ

file as follows:

$ awk ’NR\%4 == 0’ input.dsrc2.fastq > output.dsrc2.qual

14

4 More Results regarding the performance

on SNP calling

In this section we show in more detail the results obtained in the SNP calling

pipelines when the quality scores are replaced by the reconstructed ones

(after lossy compression). We first analyze the results in terms of F.P. versus

T.P., for the different pipelines, datasets and ground truth. Next we discuss

the values of the sensitivity, precision and f-score, which are summarized in

tables. Finally, we provide the ROC curves that are generated by filtering

the VCF files by a given parameter.

4.1 Performance in terms of F.P. and T.P.

Here we provide extra plots that show the behavior in terms of F.P. vs T.P.

We normalize the number of T.P. and F.P. with those generated with the

lossless (original) file, such that the number of T.P. and F.P. of the lossless

VCF after normalization become 0. We then join the points that belong to a

given algorithm, sorted by size, such that the point closer to (0,0) corresponds

to the largest size. Thus a positive number of T.P. (F.P.) means that the

corresponding VCF file contains more T.P. (F.P.) than the one generated

with the original quality scores. Ideally, we would like to get points close

to (0,0), meaning that the behavior is similar to that of the original quality

scores; or even better, points that have a positive number of T.P. and a

negative number of F.P., since that would indicate a better behavior while

reducing the size of the quality scores.

Due to the large number of simulations, we divide the section based on

the datasets, namely, NA12878 15× and 30× coverage (for both chromosome

11 and 20).

1. NA12878 15× Coverage Dataset (ERR174310)

Chromosome 11, NIST ground truth: We start by discussing the

behavior of the different algorithms with the chromosome 11, when

15

16

Lossy FP - Lossless FP
-500 0 500 1000 1500 2000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-800

-600

-400

-200

0

200

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP
-400 -200 0 200 400 600

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-800

-600

-400

-200

0

200

400

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP
-2000 0 2000 4000 6000 8000 10000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-600

-500

-400

-300

-200

-100

0

100

200

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 1: F.P. vs T.P. for different lossy compressors when using NIST ground

truth and the chromosome 11 of the NA12878 low coverage dataset, for the

three considered pipelines. QVZ is shown with 3 clusters.

the NIST ground truth is used for comparison. Fig. 1 shows the re-

sults for the three pipelines considered in this paper. As it can be

observed, Illumina’s proposed binning in GATK reduces the F.P. while

maintaining a similar number of T.P. In htslib.org and Platypus it in-

troduces several F.P., and some T.P. Note that in these two pipelines

Illumina’s proposed binning is outperformed by other lossy compressors

(in the sense that for the same number of F.P., there are other points

with larger number of T.P.). RBlock produces several F.P. and T.P.

in both GATK and htslib.org, and as the rate increases it reduces the

number of F.P. while maintaining a similar number of T.P. A different

behavior is observed in Platypus, where both the F.P. and T.P. are

negative, even when the rate increases, even though the F.P. decreases

and the T.P. increases. PBlock with high rate offers a similar behav-

ior of that of RBlock (in all three pipelines), whereas with lower rates

the performance deteriorates by decreasing both the number of T.P.

and F.P. Regarding QVZ, in the figure we show its performance for 3

clusters, when the distortion criteria is given by MSE (M), L1 (A) and

Lorentzian (L). As it can be observed, the three distortions offer a simi-

lar performance for the three pipelines. In general, for lower rates MSE

performs better, and as the rate increases there is no much difference

between the three. In GATK they introduce several F.P. and decrease

the number of T.P., and as the rate increases they approach the (0,0)

point by reducing the number of F.P. and increasing the number of T.P.

In htslib.org a different behavior is observed. Both the T.P. and the

F.P. are decreased (except for the smallest rates), that is, fewer F.P. are

called with respect to the uncompressed. On the contrary, in Platypus

both the number of F.P. and T.P. is increased, even for smaller rates.

The behavior of QVZ with one cluster is shown in Fig. 2. As it can be

observed, for all the three pipelines, the overall behavior is like that of 3

clusters, but with more F.P. and less T.P. in general. This is true for all

the simulated datasets, including the case where the Illumina ground

17

truth is used instead of the NIST. Therefore, hereafter, we omit the

discussion of QVZ with one cluster and focus on that of 3 clusters.

Regarding the lossy compressors, R/PBlock offer a similar performance,

which is quite different from that of QVZ. In terms of the pipelines,

Platypus makes more calls in general, followed by GATK and htslib.org

(look at the number of the axis).

Chromosome 20, NIST ground truth: The results of the chromo-

some 20 for all three pipelines and NIST ground truth are shown in

Fig. 3. As can be observed, the overall behavior of the different algo-

rithms is very similar to that observed for chromosome 11. The main

difference is regarding the scales of the F.P. and T.P., which is due to

the fact that chromosome 20 is smaller than chromosome 11, and thus

fewer calls are made in general. Also, chromosome 20 contains fewer

true SNPs (see Fig. 1. of main manuscript). Worth noticing is the fact

that there is a higher decrease in F.P. than in T.P. with respect to the

behavior with chromosome 11. That is, the number of T.P. remains

similar than with chromosome 11, but much fewer F.P. are obtained.

Overall, the same conclusions can be drawn looking at these results.

Chromosome 11, Illumina ground truth:

Fig. 4 shows the results of chromosome 11 when using the Illumina

ground truth. Note that the VCF files generated by each pipeline are

still the same as when using the NIST ground truth, the only difference

is that with the Illumina ground truth the number of T.P. and F.P. may

differ. For example, Illumina’s proposed binning in GATK achieves a

very similar performance than with the NIST ground truth, whereas

it improves with htslib.org and Platypus (e.g., it contains more T.P.

and fewer F.P.). RBlock and PBlock, on the contrary, improve both in

GATK and htslib.org, but they worsen in Platypus. Finally, QVZ with

GATK improves its performance at high rates, whereas its performance

deteriorates at low rates. With htslib.org the performance is slightly

18

19

Lossy FP - Lossless FP

-500 0 500 1000 1500 2000 2500

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc1

QVZ - Ac1

QVZ - Lc1

(a) GATK pipeline

Lossy FP - Lossless FP

-500 0 500 1000 1500 2000 2500 3000 3500

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-2500

-2000

-1500

-1000

-500

0

500

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc1

QVZ - Ac1

QVZ - Lc1

(b) htslib.org pipeline

Lossy FP - Lossless FP

-5000 0 5000 10000 15000 20000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-600

-500

-400

-300

-200

-100

0

100

200

300

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc1

QVZ - Ac1

QVZ - Lc1

(c) Platypus pipeline

Figure 2: F.P. vs T.P. for different lossy compressors when using NIST ground

truth and the chromosome 11 of the NA12878 15× coverage dataset, for the

three considered pipelines. QVZ is shown with 1 cluster.

20

Lossy FP - Lossless FP

-200 0 200 400 600 800 1000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-400

-300

-200

-100

0

100

200

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP

-300 -200 -100 0 100 200 300 400

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-500

-400

-300

-200

-100

0

100

200

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP

-1000 0 1000 2000 3000 4000 5000 6000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-500

-400

-300

-200

-100

0

100

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 3: F.P. vs T.P. for different lossy compressors when using NIST ground

truth and the chromosome 20 of the NA12878 15× coverage dataset, for the

three considered pipelines.

worse, and in Platypus is almost identical.

Chromosome 20, Illumina ground truth:

Fig. 5 shows the results for chromosome 20 when using the Illumina

ground truth. Similarly to the previous case, the results are very similar

to those obtained with the NIST ground truth. Illumina’s proposed

binning deteriorates its performance in GATK, remains almost identical

in Platypus and improves considerably in htslib.org. As before, RBlock

and PBlock improve both in GATK and htslib.org, but they worsen in

Platypus. Finally, the QVZ performance improves in GATK at high

rates and in htslib.org, and remains almost identical in Platypus.

2. NA12878 30× Coverage Dataset (ERR262996)

Chromosome 11, NIST ground truth:

The results regarding chromosome 11 with the NIST ground truth are

presented in Fig. 6. As can be observed, Illumina proposed binning

achieves a performance close to that of the uncompressed one, for all

the studied pipelines. Note also that in all the cases it is outperformed

by other algorithms, in the sense that for the same number of F.P.,

they achieve more T.P.. RBlock with GATK and Platypus achieves

more F.P. and more T.P. than in the 15× coverage dataset, whereas

in Platypus it achieves fewer F.P. and T.P. Note also that in GATK

increasing the rate does not necessarily yield a better performance. Fi-

nally, RBlock can not simultaneously improve with respect to the un-

compressed in the F.P. and T.P. PBlock is able to achieve with GATK

fewer F.P. and more T.P. than with the uncompressed. The behavior

with respect to the previous dataset in htslib.org is similar, but with

more T.P. and F.P., whereas in Platypus it gets more F.P. and fewer

T.P. QVZ with GATK and small rates achieves more F.P. and T.P.

than uncompressed, but as the rate increases, it outperforms it in both

F.P. and T.P. Note that this is true for all three distortions (MSE, L1

and Lorentzian). In htslib.org, QVZ decreases the number of F.P. with

21

22

Lossy FP - Lossless FP

-500 0 500 1000 1500 2000 2500

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-1000

-800

-600

-400

-200

0

200

400

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP

-100 0 100 200 300 400 500 600

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-1200

-1000

-800

-600

-400

-200

0

200

400

600

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP

-2000 0 2000 4000 6000 8000 10000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-1000

-800

-600

-400

-200

0

200

400

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 4: F.P. vs T.P. for different lossy compressors when using Illumina

ground truth and the chromosome 11 of the NA12878 15× coverage dataset,

for the three considered pipelines. QVZ is shown with 3 clusters.

23

Lossy FP - Lossless FP

-200 0 200 400 600 800 1000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-500

-400

-300

-200

-100

0

100

200

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP

-200 -100 0 100 200 300

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-600

-500

-400

-300

-200

-100

0

100

200

300

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP

-1000 0 1000 2000 3000 4000 5000 6000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-500

-400

-300

-200

-100

0

100

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 5: F.P. vs T.P. for different lossy compressors when using Illumina

ground truth and the chromosome 20 of the NA12878 15× coverage dataset,

for the three considered pipelines. QVZ is shown with 3 clusters.

respect to the uncompressed after a certain rate, whereas in Platypus

it achieves more F.P. and T.P. The number of T.P. remains similar as

the rate increases, whereas the F.P. decrease.

Chromosome 20, NIST ground truth:

Fig. 7 shows the results of chromosome 20 of the 30× coverage dataset

with the NIST ground truth. As can be observed, Illumina proposed

binning performs similar to the chromosome 11, and it is again out-

performed by other lossy compressors. Most of the RBlock points in

GATK improve upon the uncompressed. The behavior in htslib.org and

Platypus is similar to that of chromosome 11. PBlock in GATK also

has several points that improve upon the uncompressed. In htslib.org

and Platypus the behavior is very similar to chromosome 11. QVZ also

offers a similar behavior to that observed in chromosome 11. The main

difference (except for the scale of the axis, due to the smaller size of

chromosome 20), is that in GATK QVZ gets more points that improve

upon the uncompressed.

Chromosome 11, Illumina ground truth:

The results of using the Illumina ground truth are presented in Fig.

8. With the Illumina ground truth instead of NIST, in GATK most of

the points move to the left and up, that is, they obtain fewer F.P. and

more T.P. In htslib.org RBlock gets a better performance than with the

NIST, PBlock as well, but only with the higher rates. Finally, QVZ

does not seem to improve with respect to the NIST ground truth. On

the contrary, PBlock and RBlock do not improve in Platypus, whereas

QVZ does.

Chromosome 20, Illumina ground truth:

Fig. 9 shows the results of chromosome 20 with Illumina ground truth.

With respect to the NIST ground truth, in GATK the lossy compressors

offer a similar behavior, with fewer F.P. and more T.P. in general. In

htslib.org Illumina has a very similar performance, RBlock improves,

24

25

Lossy FP - Lossless FP

-400 -200 0 200 400 600 800 1000 1200

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-150

-100

-50

0

50

100 DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP

-500 0 500 1000 1500

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-200

-150

-100

-50

0

50

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP

-2000 0 2000 4000 6000 8000 10000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-200

-150

-100

-50

0

50

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 6: F.P. vs T.P. for different lossy compressors when using NIST ground

truth and the chromosome 11 of the NA12878 30× coverage dataset, for the

three considered pipelines. QVZ is shown with 3 clusters.

26

Lossy FP - Lossless FP

-200 -100 0 100 200 300 400 500 600

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-140

-120

-100

-80

-60

-40

-20

0

20

40

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP

-400 -200 0 200 400 600

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-120

-100

-80

-60

-40

-20

0

20

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP

-1000 0 1000 2000 3000 4000 5000 6000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-100

-80

-60

-40

-20

0

20

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 7: F.P. vs T.P. for different lossy compressors when using NIST ground

truth and the chromosome 20 of the NA12878 30× coverage dataset, for the

three considered pipelines. QVZ is shown with 3 clusters.

27

Lossy FP - Lossless FP

-400 -200 0 200 400 600 800 1000 1200

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-300

-200

-100

0

100

200

300

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP

-200 0 200 400 600 800 1000 1200 1400

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-350

-300

-250

-200

-150

-100

-50

0

50

100

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP

-2000 0 2000 4000 6000 8000 10000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-350

-300

-250

-200

-150

-100

-50

0

50

100

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 8: F.P. vs T.P. for different lossy compressors when using Illumina

ground truth and the chromosome 11 of the NA12878 30× coverage dataset,

for the three considered pipelines. QVZ is shown with 3 clusters.

PBlock is slightly worse in small rates and almost identical at higher

rates, and QVZ offers a slightly worse behavior. Finally, in Platypus

Illumina improves, RBlock and PBlock deteriorate their performance,

and QVZ improves.

28

29

Lossy FP - Lossless FP

-200 -100 0 100 200 300 400 500 600

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-200

-150

-100

-50

0

50

100

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(a) GATK pipeline

Lossy FP - Lossless FP

-400 -200 0 200 400 600

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-200

-150

-100

-50

0

50

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(b) htslib.org pipeline

Lossy FP - Lossless FP

-1000 0 1000 2000 3000 4000 5000 6000

L
o
ss
y
T
P

-
L
o
ss
le
ss

T
P

-160

-140

-120

-100

-80

-60

-40

-20

0

20

DSRC2 - Illumina Binning

RBlock

PBlock

QVZ - Mc3

QVZ - Ac3

QVZ - Lc3

(c) Platypus pipeline

Figure 9: F.P. vs T.P. for different lossy compressors when using Illumina

ground truth and the chromosome 20 of the NA12878 30× coverage dataset,

for the three considered pipelines. QVZ is shown with 3 clusters.

4.2 Performance in terms of sensitivity, precision and

f-score

We provide tables that show the sensitivity, precision and f-score of the differ-

ent lossy compressors for the NIST and Illumina ground truth, and for each

of the considered pipelines. Results in red indicate an improvement with

respect to the ones obtained with the original quality scores (uncompressed).

The tables can be found in the Supplementary Data (.xlsx). Specifically,

results NIST ground truth and results Illumina ground truth contain the re-

sults of the NIST and Illumina ground truth, respectively. Each sheet shows

the average results for the 30x coverage dataset (chromosomes 11 and 20), the

15x coverage dataset (chromosomes 11 and 20), and each of the individual

chromosomes.

In the main paper we provided the discussion regarding the NIST ground

truth, and thus here we focus on the results when using the Illumina ground

truth. We observe that with the Illumina ground truth, the values of the

sensitivity are smaller, whereas those of the precision are larger. These results

can be easily explained by looking at the difference between the two ground

truths (see Fig. 1. of the main paper). Illumina ground truth contains more

SNPs than the NIST, and it also includes most of the SNPs contained on the

NIST ground truth. Thus some of the calls that were F.P. with the NIST

ground truth become T.P. with the Illumina ground truth, increasing the

value of the precision. On the other hand, since the Illumina ground truth

contains more SNPs, the sensitivity decreases.

Regarding the GATK pipeline, we observe that for the 15x dataset the

results are very similar (in terms of improving with respect to the uncom-

pressed). For the 30× dataset we observe more differences. For example,

in this case RBlock still improves in the sensitivity and f-score, but not in

the precision. For the remaining algorithms the results are very similar to

those obtain with the NIST ground truth. For the htslib.org pipeline, on the

contrary, the results for the 30× coverage dataset are very similar, whereas

more differences are observed in the 15× coverage dataset. For example, in

30

the latter case, RBlock and PBlock improve the f-score. Illumina proposed

binning also improves in the f-score. Finally, the Platypus pipeline offers

a very similar performance with the two ground truths, except for RBlock,

that does not improve in general the f-score with the Illumina ground truth.

4.3 ROC performance

The ROC curve plots the False Positive Rate (F.P.R.) versus the True Pos-

itive Rate (T.P.R.) for different thresholding values. Specifically, given a

thresholding parameter, only those SNPs in the VCF file whose parameter

is above that threshold are considered positive calls. The remaining ones are

considered negatives calls. By comparing the positive calls with the ground

truth we compute the number of True Positives (T.P.) and False Positives

(F.P.). Similarly, comparing the negative calls with the ground truth gives

us the number of False Negatives (F.N.) and True Negatives (T.N.). Then,

the F.P.R. is computed as F.P./(F.P. + T.N.), and the T.P.R. as T.P./(T.P.

+ F.N.). Varying the value of the threshold yields the ROC curve.

We encountered several problems when trying to compute the ROC curves.

We first start with the selection of the thresholding parameter. To illustrate

the problem, we compute the ROC curves for the QVZ algorithm with 3 clus-

ters and MSE distortion criteria, for different rates, selecting as the thresh-

olding parameters the QUAL and the QD fields of the VCF file. The results

are shown in Fig. 10. Specifically, we show the box plot of the Area Under

the Curve (AUC) differences between the lossy case and the lossless case. As

it can be observed from the figure, the results are clearly different for the two

thresholding parameters. Moreover, for each of the thresholding parameters

different conclusions can be inferred. For example, take the rate θ = 0.8.

When the QUAL field is selected as the thresholding parameter, we see that

the median is below zero, whereas with the QD it is above zero. On the

contrary, for θ = 0, better results are obtained with the QUAL parameter.

This corroborates the fact that the selection of the thresholding parameter

is important, as different results can be inferred for different parameters.

31

θ

0 0.05 0.1 0.2 0.4 0.6 0.8 0.9

L
o
ss
y
A
U
C

-
L
o
ss
le
ss

A
U
C

×10
-3

-12

-10

-8

-6

-4

-2

0

2

QVZ-Mc3 -- QUAL

(a) Thresholding parameter: QUAL

θ

0 0.05 0.1 0.2 0.4 0.6 0.8 0.9

L
o
ss
y
A
U
C

-
L
o
ss
le
ss

A
U
C

×10
-3

-16

-14

-12

-10

-8

-6

-4

-2

0

QVZ-Mc3 -- QD

(b) Thresholding parameter: QD

Figure 10: Box plot of the difference between the lossy AUC and the lossless

AUC, for the QVZ algorithm with 3 clusters and MSE distortion criteria, for

different rates.

Another problem that we encountered is related to the fact that different

VCF files contain a different number of calls. The approach followed in [4]

was to analyze two VCF files at a time, by computing the union of the two,

and adding the missing calls to each VCF file so that after their addition the

two VCF files contained the same number of calls. The value of the selected

parameter is set to zero for those calls that were not initially in a given VCF

file. In our case, we would like to compare all the different lossy compressors,

together with the different parameters (rate, cluster, etc.). Thus, instead

of doing a pairwise comparison, we compare several VCF files following a

similar approach as the one just described. The only difference is that we

compute the union of all the VCF files under consideration. Then, as done in

[4], we add the missing calls, with parameter set to zero, to each of the VCF

files, so that at the end of this process all of them contain exactly the same

calls. That is, the only difference between the set of calls (the completed

VCF files) is the value of the thresholding parameter associated to each of

the calls.

The approach described above to compare several VCF files using a ROC

32

Table 1: AUC for the lossless case (30× coverage dataset, chromosome 11),

computing in different ways. Each column was computed by considering all

the VCF files generated by QVZ with the number of clusters and distortion

specify in the name of the column. For example, column MSE, c3 was com-

puted by considering all the VCF files generated by QVZ with 3 clusters and

MSE distortion.

Pipeline Ground Truth MSE, c3 L1, c3 MSE, c1

GATK NIST 0.6053 0.6055 0.6113

GATK Illumina 0.8229 0.8234 0.8339

htslib.org NIST 0.6176 0.6180 0.6444

htslib.org Illumina 0.8073 0.8081 0.8547

Platypus NIST 0.6382 0.6492 0.6796

Platypus Illumina 0.8544 0.8675 0.8963

curve may seem as the right approach. However, we noticed that depend-

ing of the VCF files that you compare at a time, different values of AUC

are obtained. As an example, we computed the ROC curves considering the

VCF files obtained with QVZ for a specific number of clusters and distortion

metric, and different rates, including rate 1 (lossless compression). Specifi-

cally, we computed the ROC curves considering MSE and 3 clusters, L1 and

3 clusters, and MSE and 1 cluster. The results obtained for the lossless case

(rate 1), which are the same in all cases, are summarized in Table 1. As it

can be observed, the values of the AUC for the lossless cases when comput-

ing with the MSE and L1 with three clusters are different. This difference is

more pronounce when comparing with the case of MSE with 1 cluster. For

example, the AUC of the Platypus pipeline with the Illumina ground truth

varies from 0.85 (MSE with 3 clusters) to 0.89 (MSE with 1 cluster).

This behavior makes the comparison of different AUCs unfair, unless all

the VCF files that want to be compared are used to compute the union. The

challenge here is that if we generate a new VCF file and want to compare

33

it with the previous generated VCF files, the whole analysis needs to be

carried again. For these reasons, we believe it is better to compare VCF

files by assuming all the calls are positive, and computing the sensitivity,

precision and f-score, as done in the main manuscript.

However, for completeness, we decided to show here the results we ob-

tained. Specifically, for each pipeline (GATK with hard filtering, htslib.org

and Platypus), dataset and ground truth, we compute the ROC curve by

considering all the VCF files generated by the different lossy compressors

working at different conditions (rate, number of clusters, etc.). For that, we

used the QUAL parameter as the thresholding parameter. Once the ROC

curve is generated, we compute the AUC obtained with each of the VCF files

under consideration.

In order to summarize the results, we computed for each case the dif-

ference of AUC with respect to the lossless case, such that a positive value

is an improvement with respect to the uncompressed. Then, for each lossy

compressor (working with specific parameters), we computed the average of

this difference for the different pipelines and datasets. We did this computa-

tion for the two ground truths. The final results for the NIST and Illumina

ground truths are shown in Fig 11 and Fig. 12, respectively. The x-axis

represents the different lossy compressors, as specified by the legend. Given

a lossy compressor, the points are sorted from smaller to higher rate. In the

figure we show the box plot, as well as the average behavior.

With the NIST ground truth, we see that for a given lossy compressor,

increasing the rate gives better AUCs in general. The variance also decreases

with the rate, specially with QVZ. Regarding the QVZ algorithm, MSE dis-

tortion seems to work the best. PBlock achieves an average above zero for

several rates, but it is generally outperformed by RBlock, which has an av-

erage above zero for all rates. For RBlock the median is above zero in some

cases as well. Finally, Illumina’s proposed binning has a large variance, with

the median below zero and the average above.

With the Illumina ground truth we observe similar results. QVZ improves

34

its performance with the rate, and among the simulated distortions MSE

seems to work the best. PBlock has again several points with average and

median above zero, and RBlock offers the best performance. Illumina’s point

is similar to the previous case, but with the median above zero.

Finally, we computed the ROC curves when using the GATK with the

VQSR filter pipeline. This pipeline only worked with the 30× coverage

dataset (ERR262996), and thus we only show the results for this data for

both chromosomes 11 and 20. The plots for chromosomes 11 and 20 and the

NIST ground truth are shown in Fig. 13 and Fig. 14, respectively. Similarly,

the results for the Illumina ground truth are shown in Fig. 15 (chromo-

some 11) and Fig. 16 (chromosome 20). In these plots we show the ROC

performance of all the analyzed algorithms for all the rates and distortion in

addition to the lossless performance, which is highlighted as a dashed red line.

The aim of these plots is not to analyze individual performances but to have

an overview of how the different lossy compressors affect the performance of

the VQSR algorithm as a classifier.

As it can be observed in all the plots, for different points of the ROC

curve different lossy compressors obtain the most true positive rate for the

same false positive rate. That is, there is not a unique lossy compressor that

works the best at each point. Interestingly, we also observe that the lossless

curve is outperformed almost at all points by one of the lossy compressors.

This observation is in line with the previous results, that showed that lossy

compression can improve upon the uncompressed (or lossless compressed).

Finally, one can also observe the effect of adding the missing calls to the

VCF files with parameter value set to zero. This is specially pronounce for

the chromosome 20 dataset, both for the NIST and Illumina ground truths,

where one can see that the point previous to the (1,1) has a high true positive

rate, but less than 0.5 of false positive rate. That is, most of the missing

calls are false positives.

Overall, we can conclude that lossy compression has the potential to offer

a performance close or better to that obtain with the original quality scores,

35

while significantly reducing the size of the files.

36

L
o
ss
y
C
o
m
p
re
ss
o
r
ID

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

LossyAUC-LosslessAUC

×
1
0

-3

-1
0-8-6-4-20246

N
IS

T
 G

r
o

u
n

d
 T

r
u

th

Q
V
Z
-A

c3

Q
V
Z
-L
c3

Q
V
Z
-M

c3

P
B
lo
ck

R
B
lo
ck

D
S
R
C
2
-
Il
lu
m
in
a
B
in
n
in
g

F
ig

u
re

11
:

B
ox

p
lo

t
an

d
av

er
ag

e
b

eh
av

io
r

of
th

e
d
iff

er
en

t
lo

ss
y

co
m

p
re

ss
or

s,
in

te
rm

s
of

A
U

C
,

w
h
en

u
si

n
g

th
e

N
IS

T
gr

ou
n
d

tr
u
th

.
T

h
e

re
su

lt
s

ar
e

n
or

m
al

iz
ed

w
it

h
th

os
e

of
th

e
lo

ss
le

ss
ca

se
,

su
ch

as
a

va
lu

e
ab

ov
e

0

re
p
re

se
n
ts

an
A

U
C

b
ig

ge
r

th
an

th
at

ob
ta

in
ed

w
it

h
th

e
lo

ss
le

ss
fi
le

.
T

h
e

p
oi

n
ts

w
it

h
in

a
lo

ss
y

co
m

p
re

ss
or

ar
e

so
rt

ed
fr

om
sm

al
le

r
to

h
ig

h
er

ra
te

.

37

L
o
ss
y
C
o
m
p
re
ss
o
r
ID

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

LossyAUC-LosslessAUC

×
1
0

-3

-2
0

-1
5

-1
0-505

Il
lu

m
in

a
 G

r
o

u
n

d
 T

r
u

th

Q
V
Z
-A

c3

Q
V
Z
-L
c3

Q
V
Z
-M

c3

P
B
lo
ck

R
B
lo
ck

D
S
R
C
2
-
Il
lu
m
in
a
B
in
n
in
g

F
ig

u
re

12
:

B
ox

p
lo

t
an

d
av

er
ag

e
b

eh
av

io
r

of
th

e
d
iff

er
en

t
lo

ss
y

co
m

p
re

ss
or

s,
in

te
rm

s
of

A
U

C
,

w
h
en

u
si

n
g

th
e

Il
lu

m
in

a
gr

ou
n
d

tr
u
th

.
T

h
e

re
su

lt
s

ar
e

n
or

m
al

iz
ed

w
it

h
th

os
e

of
th

e
lo

ss
le

ss
ca

se
,

su
ch

as
a

va
lu

e
ab

ov
e

0
re

p
re

se
n
ts

an
A

U
C

b
ig

ge
r

th
an

th
at

ob
ta

in
ed

w
it

h
th

e
lo

ss
le

ss
fi
le

.
T

h
e

p
oi

n
ts

w
it

h
in

a
lo

ss
y

co
m

p
re

ss
or

ar
e

so
rt

ed
fr

om
sm

al
le

r
to

h
ig

h
er

ra
te

.

38

39

False Positive Rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
r
u
e
P
o
s
it
iv
e
R
a
t
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NIST Ground Truth -- Chr11 (30x)

Figure 13: ROC plot for the GATK pipeline with VQSR filter and thresh-

olding parameter VQSLOD, with the NIST ground truth and dataset chro-

mosome 11 (30× coverage dataset).

False Positive Rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
r
u
e
P
o
s
it
iv
e
R
a
t
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NIST Ground Truth -- Chr20 (30x)

Figure 14: ROC plot for the GATK pipeline with VQSR filter and thresh-

olding parameter VQSLOD, with the NIST ground truth and dataset chro-

mosome 20 (30× coverage dataset).

40

False Positive Rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
r
u
e
P
o
s
it
iv
e
R
a
t
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Illumina Ground Truth -- Chr11 (30x)

Figure 15: ROC plot for the GATK pipeline with VQSR filter and thresh-

olding parameter VQSLOD, with the Illumina ground truth and dataset

chromosome 11 (30× coverage dataset).

False Positive Rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
r
u
e
P
o
s
it
iv
e
R
a
t
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Illumina Ground Truth -- Chr20 (30x)

Figure 16: ROC plot for the GATK pipeline with VQSR filter and thresh-

olding parameter VQSLOD, with the Illumina ground truth and dataset

chromosome 20 (30× coverage dataset).

References

[1] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,

A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly et al.,

“The genome analysis toolkit: a mapreduce framework for analyzing

next-generation dna sequencing data,” Genome research, vol. 20, no. 9,

pp. 1297–1303, 2010.

[2] R. Cánovas, A. Moffat, and A. Turpin, “Lossy compression of quality

scores in genomic data,” Bioinformatics, vol. 30, no. 15, pp. 2130–2136,

2014.

[3] G. Malysa, M. Hernaez, I. Ochoa, M. Rao, K. Ganesan, and T. Weissman,

“Qvz: lossy compression of quality values,” Bioinformatics, p. btv330,

2015.

[4] Y. W. Yu, D. Yorukoglu, J. Peng, and B. Berger, “Quality score compres-

sion improves genotyping accuracy,” Nature biotechnology, vol. 33, no. 3,

pp. 240–243, 2015.

41

