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Abstract. In this paper we propose a novel one-layer coding/shaping
transmission system for the bandwidth-limited regime based on single-
level codes and sigma-mapping [1]. Specifically, we focus on cycle-
stationary information sources with independent symbols. High spec-
tral efficiencies can be achieved by combine at the transmitter a Turbo
code with a sigma-mapper. Furthermore, the encoded symbols are modu-
lated by using an asymmetric energy allocation technique before entering
the aforementioned sigma-mapper. The corresponding decoder iterates
between the Turbo decoder and the sigma-demapper, which exchange
progressively refined extrinsic probabilities of the encoded symbols. For
the Additive White Gaussian Noise (AWGN) channel, simulation results
obtained for very simple Turbo codes show that the proposed system
attains low bit error rates at signal-to-noise ratios relatively close to the
corresponding Shannon limit. These promising results pave the way for
future investigations towards reducing the aforementioned energy gap,
e.g. by utilizing more powerful Turbo codes.
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1 Introduction

We consider the transmission, over the Additive White Gaussian Noise (AWGN)
channel, of binary symbols generated by cycle-stationary random processes,
{Tk}∞k=1, with independent symbols. This kind of processes may arise, for in-
stance, when the output sequence generated by a binary stationary source with
memory1 is partitioned into blocks of K symbols, before being processed by
the block-sorting Burrows-Wheeler Transform (BWT) [2] of length K. For large
K, it can be shown [3] that the corresponding random process {Tk}∞k=1 at the
output of the BWT can be asymptotically approximated by a cycle-stationary
random process with time period K (i.e. the length of the BWT input block),
1 A source with memory may be modeled by either a Markov Chain (MC) or a Hidden

Markov Model (HMM).



2 Cycle-Stationary Sources in the Bandwidth-Limited Regime

and independent symbols inside each output block. Under these conditions, the
output process is completely specified once the probability distribution of each
of the symbols inside an arbitrary block, say the first block, are known, i.e., when
PTk

(t), for k = 1, . . . ,K are known. Notice that the random sequence {Tk}Kk=1

is non-stationary.
The entropy rate of such a process can be computed as

H(T ) = lim
n→∞

1
nK

H(T1, . . . , TnK) =
1
K
H(T1, . . . , TK) =

1
K

K∑
k=1

H(Tk), (1)

where H(T1, . . . , TK) denotes the entropy of the random vector {Tk}Kk=1 with
joint distribution PT(t1, . . . , tK) =

∏K
k=1 PTk

(tk). In what follows, we will denote
by P 0(k) = PTk

(t = 0), and the set of values {P 0(k)}Kk=1 inside a non-stationary
block will be referred to as the zero probability profile. Notice that by cycle-
stationarity P 0(lK + k) = P 0(k), ∀l ∈ N.

By the Shannon Source-Channel Coding Theorem [4], the minimum average
energy per source symbol Eso required for reliable communication of {Tk}∞k=1

over an AWGN channel is given by

Eso
N0

>
22RH(T ) − 1

2R
, (2)

where N0 is the one-sided noise power spectral density, R denotes the transmis-
sion rate (source symbols per channel symbol), and 2R is the spectral efficiency
(binary source symbols per two dimensions). When the system has a spectral
efficiency equal or greater than 2, it operates in the bandwidth-limited regime.
Otherwise, it is said that the system works in the power-limited regime.

By the Separation Theorem, the lower limit in expression (2) can be achieved
by an ideal source encoder followed by a capacity achieving channel code. How-
ever, in this paper we propose a novel scheme, suitable for the bandwidth-limited
regime, which do not use a source encoder but rather uses the distribution
P 0(k) .= PTk

(t = 0) (zero probability profile) of the source symbols Tk to mod-
ify the BPSK constellation at the output of the Turbo encoder before entering
the sigma-mapper [1]. Preliminary simulation results with very simple Turbo
codes show a Bit Error Rate performance relatively close to the associated Sep-
aration limit, which sets the scene for future research aimed at narrowing this
performance gap.

In this context, the present paper can be viewed as an extension of the scheme
proposed in [5], suitable in the power-limited regime, for the transmission of the
symbols generated by a stationary source with memory over the AWGN channel.

The rest of the paper is organized as follows: Section 2 and 3 describe the
encoding and decoding process, respectively. Simulation results are presented in
Section 4, and finally, some concluding remarks are drawn in Section 5.
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2 Encoding Process

Figure 1 shows the proposed system, which combines Turbo coding and shap-
ing in a one-layer scheme. The cycle-stationary source T of period K, gener-
ates blocks of K independent symbols {Tk}Kk=1 having a zero probability pro-
file {P 0(k)}Kk=1. The source symbols are first encoded by a Turbo code of rate
Rc = K/N . The encoded sequence c of length N is next interleaved to form the
sequence c̃ of the same length. The interleaved block c̃ is then transformed by a
serial-to-parallel converter in I sequences v(i) of length L, where 0 ≤ i ≤ (I −1)
and N = L · I.

πT Turbo
code

S/P
t c

v(I−1)

x
Σ

K N

L

L

L

Mod

Mod

c̃

s(0)

s(I−1)
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Zero Probability Profile P 0(k)

N

...
L

L
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Fig. 1. Proposed transmission scheme.

Before entering the sigma-mapper, the modulator assigns different ampli-
tudes to the encoded symbols, depending on their position and their systematic
or parity nature. The proposed energy allocation scheme (further detailed in Sub-
section 2.1) renders a set of I non-binary sequences s(i), which are next fed to the
sigma-mapper Σ [1]. The underlying idea of the sigma-mapper hinges on impos-
ing a gaussian distribution on the output amplitude signal x of length L while
satisfying, at the same time, the energy constraint2 (1/L) ·∑L

l=1 E{|Xl|2} = Ec.
Finally, the destination receives a corrupted version of the amplitude sequence
x, denoted as y = x + n, where n denotes a L-length sequence of i.i.d. Gaussian
random variables with zero mean and variance per dimension N0/2.

2.1 Asymmetric Energy Allocation Scheme

From expression (2), the minimum average energy per channel symbol Ec for
reliable communication of the data generated by the binary cycle-stationary
source T is given by3

Ec
N0

>
22RH(T ) − 1

2
, (3)

with

H(T ) .=
1
K

K∑
k=1

hb(P 0(k)), (4)

2 E{·} stands for expectation.
3 Notice that in equation (3), R refers to the overall rate of the system, which may

differ from Rc (coding rate).
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where hb(p)
.= −p log2 p− (1−p) log2(1−p). However, since in our case the sym-

bols inside a block are non-stationary, each output symbol will require a different
average energy Ec(k) depending on its distribution P 0(k). From expression (3),
the corresponding lower limit will be given by

E∗c (k) = (22Rhb(P
0(k)) − 1)

N0

2
, (5)

and the minimum average energy per block as

E∗c =
1
K

K∑
k=1

E∗c (k). (6)

The energies used to modulate the encoded symbols are now given by E(k) =
βE∗c (k), for k = 1, . . . ,K where β > 1 is a scaling factor. Following the scheme
of [5], the amplitudes of the encoded systematic symbols depend on both their
value and the associated a priori probability P 0(k), whereas the amplitude of a
given encoded parity symbol is driven by 1) its value and 2) the value and the a
priori probability of the associated systematic bit. In particular, the amplitudes
are set to:

Systematic symbols:

−
√

1−P 0(k)
P 0(k) E(k), if uk = 0,

+
√

P 0(k)
1−P 0(k)E(k), if uk = 1.

(7)

Parity symbols:



−
√

θ
P 0(k)E(k), if the parity symbol is 0 and uk = 0,

−
√

1−θ
1−P 0(k)E(k), if the parity symbol is 0 and uk = 1,

+
√

θ
P 0(k)E(k), if the parity symbol is 1 and uk = 0,

+
√

1−θ
1−P 0(k)E(k), if the parity symbol is 1 and uk = 1.

(8)

where the arbitrary parameter θ (0 ≤ θ ≤ 1) is chosen to maximize the per-
formance of the system, which is usually achieved when θ = 0.5 [6]. In the
simulations presented in this paper, θ was set to 0.5. Notice that the resulting
constellation is not symmetric, since more energy is allocated to those symbols
with less a priori probability. Also observe that for the sake of clarity, the above
expressions (7) and (8) do not include the time index mappings due to the Turbo
and π interleavers, which must be considered in the energy allocation procedure.

A better estimation of the energies E∗c (k) defined in equation (5) can be
obtained by taking into account the loss in performance due to using a non-
capacity-achieving channel code, i.e. the actual gap to the corresponding Shan-
non limit. This is done by introducing, into expression (5), a gap factor Γ (P 0(k)),
i.e.

E∗c (k) = (22Rhb(P
0
s (k)) − 1)

N0

2
Γ (P 0(k)). (9)
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The gap Γ (p), p ≤ 0.5, is a function of the a priori probability and depends on
the particular communication scheme being used. Its value should be computed
off-line by Monte Carlo simulations. Once Γ (·) is known, the amplitudes of the
encoded symbols are calculated by following expressions (9), (6), (7) and (8),
with E(k) = βE∗c (k) for a given scaling factor β.

3 Decoding Process

The decoder is depicted in Figure 2. It iterates between the sigma-demapper,
which introduces the a priori probabilities of the source symbols, and the Turbo
decoder, which is based on applying the message passing Sum-Product Algorithm
(SPA) over the factor graph that describes the Turbo code [7].

Turbo
decoderΣ−1

P/S

P/S π

π−1
y t̂

L K

P
(e)
v (m)

P
(e)
v (m|input bit)

P
(a)
v (v(i) = m) P

(e)
v (v(i) = m)

P
(a)
v (m)

P
(a)
v (m|input bit)

Fig. 2. Decoding scheme.

The iterative decoding process starts from the sigma-demapper
∑−1, which

estimates the probabilities of the symbols contained in each of the I sequences
v(i) from the received sequence y. These probabilities are denoted by P

(e)
v (m)

for systematic bits (m ∈ {0, 1}), and by P (e)
v (m|input bit) for parity bits. Once

these probabilities are computed, the Turbo decoder incorporates them (through
the parallel-to-serial converter and the deinterleaver π−1) as a priori information
on the systematic and parity encoded symbols. Then, the SPA applied to the
factor graph of the Turbo code produces a set of refined a posteriori and extrinsic
probabilities4; the latter are then fed back to the sigma-demapper as a a priori
probabilities, giving rise to a new iteration. At each iteration, an estimation T̂k
of Tk can be obtained for k = 1, . . . ,K by performing a hard-decision over the a
posteriori probabilities generated by the Turbo decoder. The decoding process is
stopped after a fixed number of iterations Ψ . It is important to observe that, in
our scheme, the SPA applied to the Turbo factor graph is extended with respect
to the conventional forward and backward recursions (see [7, Section IV.A]) so
as to incorporate the generation of the extrinsic probabilities corresponding to
the parity bits.
4 In the Turbo processing jargon, extrinsic refers to the fraction of the output proba-

bilistic information that does not depend on any input a priori probability.
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Fig. 3. (a) Zero probability profiles of the considered MC and HMM sources con-
catenated with the BWT, and K = 16384. (b) Polynomial approximation of the gap
margin functions for the proposed scheme and K = 8192.

4 Simulation Results

In order to study the performance of the proposed system, we have consid-
ered three different cycle-stationary sources Ti with zero probability profiles
{P 0

i (k)}Kk=1, with i ∈ {1, 2, 3} and K = 16384. They have been obtained by
estimating the probability distribution at the output of the BWT for an input
source with memory following a Markov Chain (MC) for i ∈ {1, 3}, and a Hid-
den Markov Model (HMM) for i = 2. For i = 1 and i = 2, we have utilized the
MC and the HMM employed in [5], both having two states and entropy rates
0.58 and 0.62 bits per source symbol, respectively. On the other hand, for i = 3
we have selected a MC with 3 states and entropy rate 0.83 bits per source sym-
bol. The corresponding zero probability profiles at the output of the BWT are
shown in Figure 3.a, which have been estimated by using frequency of occur-
rence as in [8, Expression (57)]. The Turbo code from [1, Example A] with rate
Rc = 1/3 and generator polynomial G(D) = 1/(1+D) has been adopted for our
simulations. The serial-to-parallel converter outputs I = 3 sequences v(i), and
therefore the overall transmission rate R (source symbol per dimension) is 1, i.e.
we are working in the bandwidth-limited regime (spectral efficiency of 2). The
corresponding Shannon limits Eso/N0 when R = 1 are −2.13 dB (T1), −1.69 dB
(T2) and 0.293 dB (T3).

Figure 3.b depicts the gap factor Γ (p), p ≤ 0.5, used in expression (9). This
gap has been calculated by simulating the proposed scheme for a stationary i.i.d.
source with symbol distribution (p, 1−p) and blocklengthK = 8192 (� markers).
The figure also includes a 5th-order polynomial approximation for the simulated
Γ (p), which can be easily programmed beforehand to produce the gamma func-
tion for any arbitrary value of p. Observe that Γ (p) is a monotonically decreasing
function of p, which indicates that the performance of the proposed setup with
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i.i.d. stationary sources degrades as the distribution of the source symbols is
more asymmetric.
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Fig. 4. BER vs Eso/N0 of the proposed scheme for {Ti}3i=1.

Finally, Monte Carlo simulations have been performed for a blocklength of
K = 16384 source symbols, Ψ = 50 decoding iterations and 1000 source se-
quences per simulated point. Figure 4 plots the Bit Error Rate (BER) versus
Eso/N0 for the three probability profiles and by using the energy allocation
technique introduced in Section 2.1. However, we have modified the way the set
of energies E∗c (k) is calculated, because simulations have empirically shown a
performance improvement when R is replaced by Rc in expression (9). When
the source is generated with the first probability profile {P 0

1 (k)}Kk=1 (T1), the
proposed system is 2.55dB away of the theoretical limit for a BER of 10−4. For
the second probability profile (T2), the system is 3.57 dB away of its correspond-
ing Shannon limit. Finally, the system applied to the third source T3 performs
at 2.17 dB away from the corresponding Shannon limit at the same BER level.
Notice that these results have been obtained by means of a very simple Turbo
code. We believe that by optimizing the Turbo code better results (i.e. closer to
the Shannon limit) could be obtained.

5 Concluding Remarks

We have proposed a novel scheme for the transmission of cycle-stationary sources
over AWGN channels in the bandwidth-limited regime. The novel scheme is
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based on the combination of a Turbo encoder and a sigma-mapper that jointly
perform the source and channel coding task, and on the use of an asymmet-
ric waterfilling energy allocation technique. The simulation results obtained for
very simple Turbo codes state that, for a variety of cycle-stationary sources, the
BER performance of our proposed scheme gets close to the corresponding Shan-
non separation limit. These promising results motivate further research towards
narrowing the aforementioned gap, e.g. by utilizing Turbo codes with enhanced
BER waterfall performance.
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